• Previous Article
    Time-like surfaces of prescribed anisotropic mean curvature in Minkowski space
  • PROC Home
  • This Issue
  • Next Article
    Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains
2011, 2011(Special): 145-154. doi: 10.3934/proc.2011.2011.145

Drawing the output of dynamical systems by juxtaposing local outputs


INSA-IRISA, 20 avenue des Buttes de Coesmes, 35043 Rennes cedex, France, France, France

Received  July 2010 Revised  June 2011 Published  October 2011

A dynamical system being described by its state equations and its initial state, we develop a method for drawing its output: It is based on the juxtaposition of local approximating outputs on successive time intervals $[t_i, t_(i+1)]0<=i<=n-1$. It consists in computing an approximated value of the state at initial point $t_i$ and an approximated output $y_i(t)$ on $[t_i, t_(i+1)]0<=i<=n-1$. An expression of the generating series $G_(q_r,t)$ for every component $q_r$ of the state $q$, an expression of the generating series $G_(y,t)$ of the output $y$ truncated at order $k$ are calculated and specified at every initial point $t_i$. We obtain an approximated output $y(t)$ at order $k$ in every interval $[t_i, t_(i+1)]0<=i<=n-1$. This method presents some theoretical advantages over Runge-Kutta methods: genericity, independency of the system and of the input, estimate of the error. So, an estimate of the suitable largest step can be computed. We have developed a Maple package for the creation of the generic expression of $G_(q_r,t),G_(y,t)$ and $y(t)$ at order $k$ and for the drawing of the local curves on every interval $[t_i, t_(i+1)]0<=i<=n-1$. For stable systems with oscillating output, for unstable systems near instability points, our method provides an appropriate result when a Runge-Kutta method is not suitable.
Citation: Farida Benmakrouha, Christiane Hespel, Edouard Monnier. Drawing the output of dynamical systems by juxtaposing local outputs. Conference Publications, 2011, 2011 (Special) : 145-154. doi: 10.3934/proc.2011.2011.145

Quoc T. Luu, Paul DuChateau. The relative biologic effectiveness versus linear energy transfer curve as an output-input relation for linear cellular systems. Mathematical Biosciences & Engineering, 2009, 6 (3) : 591-602. doi: 10.3934/mbe.2009.6.591


Wenjing Chen, Louis Dupaigne, Marius Ghergu. A new critical curve for the Lane-Emden system. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2469-2479. doi: 10.3934/dcds.2014.34.2469


Wen-Guei Hu, Song-Sun Lin. On spatial entropy of multi-dimensional symbolic dynamical systems. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3705-3717. doi: 10.3934/dcds.2016.36.3705


H. M. Hastings, S. Silberger, M. T. Weiss, Y. Wu. A twisted tensor product on symbolic dynamical systems and the Ashley's problem. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 549-558. doi: 10.3934/dcds.2003.9.549


Hideo Ikeda, Masayasu Mimura, Tommaso Scotti. Shadow system approach to a plankton model generating harmful algal bloom. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 829-858. doi: 10.3934/dcds.2017034


Leong-Kwan Li, Sally Shao, K. F. Cedric Yiu. Nonlinear dynamical system modeling via recurrent neural networks and a weighted state space search algorithm. Journal of Industrial and Management Optimization, 2011, 7 (2) : 385-400. doi: 10.3934/jimo.2011.7.385


Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281


Steven D. Galbraith, Ping Wang, Fangguo Zhang. Computing elliptic curve discrete logarithms with improved baby-step giant-step algorithm. Advances in Mathematics of Communications, 2017, 11 (3) : 453-469. doi: 10.3934/amc.2017038


Yūki Naito, Takasi Senba. Oscillating solutions to a parabolic-elliptic system related to a chemotaxis model. Conference Publications, 2011, 2011 (Special) : 1111-1118. doi: 10.3934/proc.2011.2011.1111


David Burguet, Todd Fisher. Symbolic extensionsfor partially hyperbolic dynamical systems with 2-dimensional center bundle. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2253-2270. doi: 10.3934/dcds.2013.33.2253


Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial and Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107


Nicolas Fournier. A recursive algorithm and a series expansion related to the homogeneous Boltzmann equation for hard potentials with angular cutoff. Kinetic and Related Models, 2019, 12 (3) : 483-505. doi: 10.3934/krm.2019020


P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692


Safya Belghith. Symbolic dynamics in nondifferentiable system originating in R-L-Diode driven circuit. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 275-292. doi: 10.3934/dcds.2000.6.275


Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375


Nir Avni, Benjamin Weiss. Generating product systems. Journal of Modern Dynamics, 2010, 4 (2) : 257-270. doi: 10.3934/jmd.2010.4.257


Włodzimierz M. Tulczyjew, Paweł Urbański. Regularity of generating families of functions. Journal of Geometric Mechanics, 2010, 2 (2) : 199-221. doi: 10.3934/jgm.2010.2.199


Simone Vazzoler. A note on the normalization of generating functions. Journal of Geometric Mechanics, 2018, 10 (2) : 209-215. doi: 10.3934/jgm.2018008


Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004


Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

 Impact Factor: 


  • PDF downloads (47)
  • HTML views (0)
  • Cited by (0)

[Back to Top]