2011, 2011(Special): 258-264. doi: 10.3934/proc.2011.2011.258

A Priori estimates for solutions of differential inclusions

1. 

Octav Mayer Mathematics Institute, Romanian Academy, Department of Mathematics, University Al. I. Cuza, Bd. CAROL I, no. 11 Iasi, 700506, Romania

2. 

University Al. I. Cuza, Bd. CAROL I, no. 11, Iasi, 700506, Romania

Received  July 2010 Revised  April 2011 Published  October 2011

We get a priori estimates for solutions of di erential inclusion $y' \in Ay + F(y)$, where $A$ generates a $C_0$-semigroup in a Banach space and $F$ is a multi-function. The existence of a global solution is also considered.
Citation: Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258
[1]

Pavol Quittner, Philippe Souplet. A priori estimates of global solutions of superlinear parabolic problems without variational structure. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1277-1292. doi: 10.3934/dcds.2003.9.1277

[2]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[3]

Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure & Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731

[4]

Alfonso Castro, Rosa Pardo. A priori estimates for positive solutions to subcritical elliptic problems in a class of non-convex regions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 783-790. doi: 10.3934/dcdsb.2017038

[5]

Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1905-1927. doi: 10.3934/dcdss.2019125

[6]

Mariusz Michta. On solutions to stochastic differential inclusions. Conference Publications, 2003, 2003 (Special) : 618-622. doi: 10.3934/proc.2003.2003.618

[7]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[8]

Diogo A. Gomes, Gabriel E. Pires, Héctor Sánchez-Morgado. A-priori estimates for stationary mean-field games. Networks & Heterogeneous Media, 2012, 7 (2) : 303-314. doi: 10.3934/nhm.2012.7.303

[9]

Jianguo Huang, Jun Zou. Uniform a priori estimates for elliptic and static Maxwell interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 145-170. doi: 10.3934/dcdsb.2007.7.145

[10]

Dian Palagachev, Lubomira Softova. A priori estimates and precise regularity for parabolic systems with discontinuous data. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 721-742. doi: 10.3934/dcds.2005.13.721

[11]

Weisong Dong, Tingting Wang, Gejun Bao. A priori estimates for the obstacle problem of Hessian type equations on Riemannian manifolds. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1769-1780. doi: 10.3934/cpaa.2016013

[12]

Radjesvarane Alexandre, Jie Liao, Chunjin Lin. Some a priori estimates for the homogeneous Landau equation with soft potentials. Kinetic & Related Models, 2015, 8 (4) : 617-650. doi: 10.3934/krm.2015.8.617

[13]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[14]

Théophile Chaumont-Frelet, Serge Nicaise, Jérôme Tomezyk. Uniform a priori estimates for elliptic problems with impedance boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (5) : 2445-2471. doi: 10.3934/cpaa.2020107

[15]

Laura Baldelli, Roberta Filippucci. A priori estimates for elliptic problems via Liouville type theorems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1883-1898. doi: 10.3934/dcdss.2020148

[16]

Sergey Dashkovskiy, Oleksiy Kapustyan, Iryna Romaniuk. Global attractors of impulsive parabolic inclusions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1875-1886. doi: 10.3934/dcdsb.2017111

[17]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Periodic solutions for implicit evolution inclusions. Evolution Equations & Control Theory, 2019, 8 (3) : 621-631. doi: 10.3934/eect.2019029

[18]

Kenneth Kuttler. Measurable solutions for elliptic and evolution inclusions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020041

[19]

Kevin T. Andrews, Kenneth L. Kuttler, Ji Li, Meir Shillor. Measurable solutions to general evolution inclusions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020055

[20]

Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations & Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025

 Impact Factor: 

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]