
Previous Article
Ellipticity of quantum mechanical Hamiltonians in the edge algebra
 PROC Home
 This Issue

Next Article
Global Cauchy problem of an ideal densitydependent MHD$\alpha$ model
Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty
1.  Department of Optimal Control, Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16 Sofia Kovalevskaya str., Ekaterinburg 620990, Russian Federation 
[1] 
Mariusz Michta. Stochastic inclusions with noncontinuous setvalued operators. Conference Publications, 2009, 2009 (Special) : 548557. doi: 10.3934/proc.2009.2009.548 
[2] 
Roger Metzger, Carlos Arnoldo Morales Rojas, Phillipe Thieullen. Topological stability in setvalued dynamics. Discrete & Continuous Dynamical Systems  B, 2017, 22 (5) : 19651975. doi: 10.3934/dcdsb.2017115 
[3] 
GengHua Li, ShengJie Li. Unified optimality conditions for setvalued optimizations. Journal of Industrial & Management Optimization, 2019, 15 (3) : 11011116. doi: 10.3934/jimo.2018087 
[4] 
Dante CarrascoOlivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for setvalued maps. Discrete & Continuous Dynamical Systems  B, 2015, 20 (10) : 34613474. doi: 10.3934/dcdsb.2015.20.3461 
[5] 
Yu Zhang, Tao Chen. Minimax problems for setvalued mappings with set optimization. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 327340. doi: 10.3934/naco.2014.4.327 
[6] 
Robert Baier, Thuy T. T. Le. Construction of the minimum time function for linear systems via higherorder setvalued methods. Mathematical Control & Related Fields, 2019, 9 (2) : 223255. doi: 10.3934/mcrf.2019012 
[7] 
Zengjing Chen, Yuting Lan, Gaofeng Zong. Strong law of large numbers for upper setvalued and fuzzyset valued probability. Mathematical Control & Related Fields, 2015, 5 (3) : 435452. doi: 10.3934/mcrf.2015.5.435 
[8] 
Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems  B, 2003, 3 (3) : 361382. doi: 10.3934/dcdsb.2003.3.361 
[9] 
Qingbang Zhang, Caozong Cheng, Xuanxuan Li. Generalized minimax theorems for two setvalued mappings. Journal of Industrial & Management Optimization, 2013, 9 (1) : 112. doi: 10.3934/jimo.2013.9.1 
[10] 
Sina Greenwood, Rolf Suabedissen. 2manifolds and inverse limits of setvalued functions on intervals. Discrete & Continuous Dynamical Systems  A, 2017, 37 (11) : 56935706. doi: 10.3934/dcds.2017246 
[11] 
Zhenhua Peng, Zhongping Wan, Weizhi Xiong. Sensitivity analysis in setvalued optimization under strictly minimal efficiency. Evolution Equations & Control Theory, 2017, 6 (3) : 427436. doi: 10.3934/eect.2017022 
[12] 
Guolin Yu. Topological properties of Henig globally efficient solutions of setvalued problems. Numerical Algebra, Control & Optimization, 2014, 4 (4) : 309316. doi: 10.3934/naco.2014.4.309 
[13] 
Elena K. Kostousova. On polyhedral estimates for trajectory tubes of dynamical discretetime systems with multiplicative uncertainty. Conference Publications, 2011, 2011 (Special) : 864873. doi: 10.3934/proc.2011.2011.864 
[14] 
Mieczysław Cichoń, Bianca Satco. On the properties of solutions set for measure driven differential inclusions. Conference Publications, 2015, 2015 (special) : 287296. doi: 10.3934/proc.2015.0287 
[15] 
C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a setvalued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519528. doi: 10.3934/jimo.2007.3.519 
[16] 
Jiawei Chen, Zhongping Wan, Liuyang Yuan. Existence of solutions and $\alpha$wellposedness for a system of constrained setvalued variational inequalities. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 567581. doi: 10.3934/naco.2013.3.567 
[17] 
Guolin Yu. Global proper efficiency and vector optimization with conearcwise connected setvalued maps. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 3544. doi: 10.3934/naco.2016.6.35 
[18] 
Yihong Xu, Zhenhua Peng. Higherorder sensitivity analysis in setvalued optimization under Henig efficiency. Journal of Industrial & Management Optimization, 2017, 13 (1) : 313327. doi: 10.3934/jimo.2016019 
[19] 
Benjamin Seibold, Morris R. Flynn, Aslan R. Kasimov, Rodolfo R. Rosales. Constructing setvalued fundamental diagrams from Jamiton solutions in second order traffic models. Networks & Heterogeneous Media, 2013, 8 (3) : 745772. doi: 10.3934/nhm.2013.8.745 
[20] 
Shay Kels, Nira Dyn. Bernsteintype approximation of setvalued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems  A, 2014, 34 (3) : 10411060. doi: 10.3934/dcds.2014.34.1041 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]