-
Previous Article
Global recurrences of multi-time scaled systems
- PROC Home
- This Issue
-
Next Article
Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty
Ellipticity of quantum mechanical Hamiltonians in the edge algebra
1. | Institut für Mathematik, Technische Universität Berlin, Strabe des 17. Juni 136, D-10623 Berlin, Germany |
2. | Institut für Mathematik, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany |
[1] |
A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete and Continuous Dynamical Systems - B, 2003, 3 (1) : 97-104. doi: 10.3934/dcdsb.2003.3.97 |
[2] |
Matt Coles, Stephen Gustafson. A degenerate edge bifurcation in the 1D linearized nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 2991-3009. doi: 10.3934/dcds.2016.36.2991 |
[3] |
Veronica Felli, Elsa M. Marchini, Susanna Terracini. On the behavior of solutions to Schrödinger equations with dipole type potentials near the singularity. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 91-119. doi: 10.3934/dcds.2008.21.91 |
[4] |
Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control and Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161 |
[5] |
Claude Bardos, François Golse, Peter Markowich, Thierry Paul. On the classical limit of the Schrödinger equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5689-5709. doi: 10.3934/dcds.2015.35.5689 |
[6] |
D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563 |
[7] |
Frank Wusterhausen. Schrödinger equation with noise on the boundary. Conference Publications, 2013, 2013 (special) : 791-796. doi: 10.3934/proc.2013.2013.791 |
[8] |
Valeria Banica, Luis Vega. Singularity formation for the 1-D cubic NLS and the Schrödinger map on $\mathbb S^2$. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1317-1329. doi: 10.3934/cpaa.2018064 |
[9] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[10] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807 |
[11] |
Alexander Arbieto, Carlos Matheus. On the periodic Schrödinger-Debye equation. Communications on Pure and Applied Analysis, 2008, 7 (3) : 699-713. doi: 10.3934/cpaa.2008.7.699 |
[12] |
Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094 |
[13] |
Tarek Saanouni. Remarks on the damped nonlinear Schrödinger equation. Evolution Equations and Control Theory, 2020, 9 (3) : 721-732. doi: 10.3934/eect.2020030 |
[14] |
Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations and Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233 |
[15] |
Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016 |
[16] |
Claudianor O. Alves, Chao Ji. Multiple positive solutions for a Schrödinger logarithmic equation. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2671-2685. doi: 10.3934/dcds.2020145 |
[17] |
Jaime Cruz-Sampedro. Schrödinger-like operators and the eikonal equation. Communications on Pure and Applied Analysis, 2014, 13 (2) : 495-510. doi: 10.3934/cpaa.2014.13.495 |
[18] |
Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1 |
[19] |
Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations and Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431 |
[20] |
Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]