2011, 2011(Special): 467-474. doi: 10.3934/proc.2011.2011.467

Do longer delays matter? The effect of prolonging delay in CTL activation

1. 

Department of Mathematics, Loyola Marymount University, Los Angeles, CA, United States

2. 

Department of Mathematics, Pomona College, 610 N. College Ave., Claremont, CA 91711

Received  July 2010 Revised  April 2011 Published  October 2011

The activation of a speci c immune response takes place in the lymphoid organs such as the spleen. We present here a simpli ed model of the proliferation of speci c immune cells in the form of a single delay equation. We show that the system can undergo switches in stability as the delay is increased, and we interpret these results in the context of sustaining an e ective immune response to a dendritic cell vaccine.
Citation: Angela Gallegos, Ami Radunskaya. Do longer delays matter? The effect of prolonging delay in CTL activation. Conference Publications, 2011, 2011 (Special) : 467-474. doi: 10.3934/proc.2011.2011.467
[1]

Eugen Stumpf. Local stability analysis of differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3445-3461. doi: 10.3934/dcds.2016.36.3445

[2]

Evelyn Buckwar, Girolama Notarangelo. A note on the analysis of asymptotic mean-square stability properties for systems of linear stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1521-1531. doi: 10.3934/dcdsb.2013.18.1521

[3]

Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115

[4]

Yanqiang Chang, Huabin Chen. Stability analysis of stochastic delay differential equations with Markovian switching driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021301

[5]

Jan Sieber, Matthias Wolfrum, Mark Lichtner, Serhiy Yanchuk. On the stability of periodic orbits in delay equations with large delay. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3109-3134. doi: 10.3934/dcds.2013.33.3109

[6]

Luis Barreira, Claudia Valls. Delay equations and nonuniform exponential stability. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 219-223. doi: 10.3934/dcdss.2008.1.219

[7]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

[8]

Leonid Berezansky, Elena Braverman. Stability of linear differential equations with a distributed delay. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1361-1375. doi: 10.3934/cpaa.2011.10.1361

[9]

Jan Čermák, Jana Hrabalová. Delay-dependent stability criteria for neutral delay differential and difference equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4577-4588. doi: 10.3934/dcds.2014.34.4577

[10]

Elena Braverman, Sergey Zhukovskiy. Absolute and delay-dependent stability of equations with a distributed delay. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2041-2061. doi: 10.3934/dcds.2012.32.2041

[11]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[12]

Songbai Guo, Jing-An Cui, Wanbiao Ma. An analysis approach to permanence of a delay differential equations model of microorganism flocculation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3831-3844. doi: 10.3934/dcdsb.2021208

[13]

Qiang Li, Mei Wei. Existence and asymptotic stability of periodic solutions for neutral evolution equations with delay. Evolution Equations and Control Theory, 2020, 9 (3) : 753-772. doi: 10.3934/eect.2020032

[14]

Tomás Caraballo, José Real, T. Taniguchi. The exponential stability of neutral stochastic delay partial differential equations. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 295-313. doi: 10.3934/dcds.2007.18.295

[15]

Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855

[16]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[17]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[18]

Samuel Bernard, Jacques Bélair, Michael C Mackey. Sufficient conditions for stability of linear differential equations with distributed delay. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 233-256. doi: 10.3934/dcdsb.2001.1.233

[19]

Gang Huang, Yasuhiro Takeuchi, Rinko Miyazaki. Stability conditions for a class of delay differential equations in single species population dynamics. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2451-2464. doi: 10.3934/dcdsb.2012.17.2451

[20]

Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678

 Impact Factor: 

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]