2011, 2011(Special): 475-484. doi: 10.3934/proc.2011.2011.475

Comparing the efficiency of numerical techniques for the integration of variational equations

1. 

Lohrmann Observatory, Technical University Dresden, D-01062 Dredsen, Germany

2. 

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, D-01187 Dresden, Germany

Received  July 2010 Revised  April 2011 Published  October 2011

We present a comparison of different numerical techniques for the integration of variational equations. The methods presented can be applied to any autonomous Hamiltonian system whose kinetic energy is quadratic in the generalized momenta, and whose potential is a function of the generalized positions. We apply the various techniques to the well-known H´enon-Heiles system, and use the Smaller Alignment Index (SALI) method of chaos detection to evaluate the percentage of its chaotic orbits. The accuracy and the speed of the integration schemes in evaluating this percentage are used to investigate the numerical efficiency of the various techniques.
Citation: Enrico Gerlach, Charlampos Skokos. Comparing the efficiency of numerical techniques for the integration of variational equations. Conference Publications, 2011, 2011 (Special) : 475-484. doi: 10.3934/proc.2011.2011.475
[1]

Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373

[2]

Iuliana Oprea, Gerhard Dangelmayr. A period doubling route to spatiotemporal chaos in a system of Ginzburg-Landau equations for nematic electroconvection. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 273-296. doi: 10.3934/dcdsb.2018095

[3]

Ting Yang. Homoclinic orbits and chaos in the generalized Lorenz system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1097-1108. doi: 10.3934/dcdsb.2019210

[4]

Zhujun Jing, K.Y. Chan, Dashun Xu, Hongjun Cao. Bifurcations of periodic solutions and chaos in Josephson system. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 573-592. doi: 10.3934/dcds.2001.7.573

[5]

Alberto Bressan, Yilun Jiang. The vanishing viscosity limit for a system of H-J equations related to a debt management problem. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : 793-824. doi: 10.3934/dcdss.2018050

[6]

Hongxia Yin. An iterative method for general variational inequalities. Journal of Industrial and Management Optimization, 2005, 1 (2) : 201-209. doi: 10.3934/jimo.2005.1.201

[7]

Alfonso Ruiz-Herrera. Chaos in delay differential equations with applications in population dynamics. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1633-1644. doi: 10.3934/dcds.2013.33.1633

[8]

Piotr Gwiazda, Karolina Kropielnicka, Anna Marciniak-Czochra. The Escalator Boxcar Train method for a system of age-structured equations. Networks and Heterogeneous Media, 2016, 11 (1) : 123-143. doi: 10.3934/nhm.2016.11.123

[9]

Tahereh Salimi Siahkolaei, Davod Khojasteh Salkuyeh. A preconditioned SSOR iteration method for solving complex symmetric system of linear equations. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 483-492. doi: 10.3934/naco.2019033

[10]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1511-1547. doi: 10.3934/dcdsb.2021100

[11]

Sergi Simon. Linearised higher variational equations. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[12]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[13]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[14]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete and Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[15]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[16]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[17]

Peter Giesl, Martin Rasmussen. A note on almost periodic variational equations. Communications on Pure and Applied Analysis, 2011, 10 (3) : 983-994. doi: 10.3934/cpaa.2011.10.983

[18]

Luigi Ambrosio. Variational models for incompressible Euler equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 1-10. doi: 10.3934/dcdsb.2009.11.1

[19]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[20]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure and Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

 Impact Factor: 

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]