-
Previous Article
$L^1$ maximal regularity for the laplacian and applications
- PROC Home
- This Issue
-
Next Article
Comparing the efficiency of numerical techniques for the integration of variational equations
Transport and generation of macroscopically modulated waves in diatomic chains
1. | Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, D-10117 Berlin |
[1] |
Martina Chirilus-Bruckner, Christopher Chong, Oskar Prill, Guido Schneider. Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 879-901. doi: 10.3934/dcdss.2012.5.879 |
[2] |
Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219 |
[3] |
Wen-Xin Qin. Modulation of uniform motion in diatomic Frenkel-Kontorova model. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3773-3788. doi: 10.3934/dcds.2014.34.3773 |
[4] |
F. J. Lin. Hamiltonian dynamics of atom-diatomic molecule complexes and collisions. Conference Publications, 2007, 2007 (Special) : 655-666. doi: 10.3934/proc.2007.2007.655 |
[5] |
Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete and Continuous Dynamical Systems, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235 |
[6] |
Luisa Berchialla, Luigi Galgani, Antonio Giorgilli. Localization of energy in FPU chains. Discrete and Continuous Dynamical Systems, 2004, 11 (4) : 855-866. doi: 10.3934/dcds.2004.11.855 |
[7] |
Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic and Related Models, 2021, 14 (3) : 541-570. doi: 10.3934/krm.2021015 |
[8] |
Ciro D'Apice, Rosanna Manzo. A fluid dynamic model for supply chains. Networks and Heterogeneous Media, 2006, 1 (3) : 379-398. doi: 10.3934/nhm.2006.1.379 |
[9] |
Yan Yong, Weiyuan Zou. Macroscopic regularity for the relativistic Boltzmann equation with initial singularities. Kinetic and Related Models, 2019, 12 (5) : 945-967. doi: 10.3934/krm.2019036 |
[10] |
Lukas Neumann, Christian Schmeiser. A kinetic reaction model: Decay to equilibrium and macroscopic limit. Kinetic and Related Models, 2016, 9 (3) : 571-585. doi: 10.3934/krm.2016007 |
[11] |
Michael Fischer, Gaspard Jankowiak, Marie-Therese Wolfram. Micro- and macroscopic modeling of crowding and pushing in corridors. Networks and Heterogeneous Media, 2020, 15 (3) : 405-426. doi: 10.3934/nhm.2020025 |
[12] |
Pierre Degond, Cécile Appert-Rolland, Julien Pettré, Guy Theraulaz. Vision-based macroscopic pedestrian models. Kinetic and Related Models, 2013, 6 (4) : 809-839. doi: 10.3934/krm.2013.6.809 |
[13] |
Vladimir Djordjić, Milana Pavić-Čolić, Nikola Spasojević. Polytropic gas modelling at kinetic and macroscopic levels. Kinetic and Related Models, 2021, 14 (3) : 483-522. doi: 10.3934/krm.2021013 |
[14] |
Sara Bernardi, Gissell Estrada-Rodriguez, Heiko Gimperlein, Kevin J. Painter. Macroscopic descriptions of follower-leader systems. Kinetic and Related Models, 2021, 14 (6) : 981-1002. doi: 10.3934/krm.2021035 |
[15] |
Lei Jing, Jiawei Sun. Global existence and long time behavior of the Ellipsoidal-Statistical-Fokker-Planck model for diatomic gases. Kinetic and Related Models, 2020, 13 (2) : 373-400. doi: 10.3934/krm.2020013 |
[16] |
Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139 |
[17] |
Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1147-1168. doi: 10.3934/cpaa.2017056 |
[18] |
Leszek Gasiński, Nikolaos S. Papageorgiou. Dirichlet $(p,q)$-equations at resonance. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2037-2060. doi: 10.3934/dcds.2014.34.2037 |
[19] |
D. Bonheure, C. Fabry. A variational approach to resonance for asymmetric oscillators. Communications on Pure and Applied Analysis, 2007, 6 (1) : 163-181. doi: 10.3934/cpaa.2007.6.163 |
[20] |
Philip Korman. Curves of equiharmonic solutions, and problems at resonance. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2847-2860. doi: 10.3934/dcds.2014.34.2847 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]