2011, 2011(Special): 485-494. doi: 10.3934/proc.2011.2011.485

Transport and generation of macroscopically modulated waves in diatomic chains

1. 

Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstraße 39, D-10117 Berlin

Received  August 2010 Revised  April 2011 Published  October 2011

We derive and justify analytically the dynamics of a small macroscopically modulated amplitude of a single plane wave in a nonlinear diatomic chain with stabilizing on-site potentials including the case where a wave generates another wave via self-interaction. More precisely, we show that in typical chains acoustical waves can generate optical but not acoustical waves, while optical waves are always closed with respect to self-interaction.
Citation: Johannes Giannoulis. Transport and generation of macroscopically modulated waves in diatomic chains. Conference Publications, 2011, 2011 (Special) : 485-494. doi: 10.3934/proc.2011.2011.485
[1]

Martina Chirilus-Bruckner, Christopher Chong, Oskar Prill, Guido Schneider. Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations. Discrete & Continuous Dynamical Systems - S, 2012, 5 (5) : 879-901. doi: 10.3934/dcdss.2012.5.879

[2]

Francisco Odair de Paiva, Humberto Ramos Quoirin. Resonance and nonresonance for p-Laplacian problems with weighted eigenvalues conditions. Discrete & Continuous Dynamical Systems, 2009, 25 (4) : 1219-1227. doi: 10.3934/dcds.2009.25.1219

[3]

Wen-Xin Qin. Modulation of uniform motion in diatomic Frenkel-Kontorova model. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3773-3788. doi: 10.3934/dcds.2014.34.3773

[4]

F. J. Lin. Hamiltonian dynamics of atom-diatomic molecule complexes and collisions. Conference Publications, 2007, 2007 (Special) : 655-666. doi: 10.3934/proc.2007.2007.655

[5]

Sergey V. Bolotin. Shadowing chains of collision orbits. Discrete & Continuous Dynamical Systems, 2006, 14 (2) : 235-260. doi: 10.3934/dcds.2006.14.235

[6]

Luisa Berchialla, Luigi Galgani, Antonio Giorgilli. Localization of energy in FPU chains. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 855-866. doi: 10.3934/dcds.2004.11.855

[7]

Kamel Hamdache, Djamila Hamroun. Macroscopic limit of the kinetic Bloch equation. Kinetic & Related Models, 2021, 14 (3) : 541-570. doi: 10.3934/krm.2021015

[8]

Ciro D'Apice, Rosanna Manzo. A fluid dynamic model for supply chains. Networks & Heterogeneous Media, 2006, 1 (3) : 379-398. doi: 10.3934/nhm.2006.1.379

[9]

Yan Yong, Weiyuan Zou. Macroscopic regularity for the relativistic Boltzmann equation with initial singularities. Kinetic & Related Models, 2019, 12 (5) : 945-967. doi: 10.3934/krm.2019036

[10]

Lukas Neumann, Christian Schmeiser. A kinetic reaction model: Decay to equilibrium and macroscopic limit. Kinetic & Related Models, 2016, 9 (3) : 571-585. doi: 10.3934/krm.2016007

[11]

Michael Fischer, Gaspard Jankowiak, Marie-Therese Wolfram. Micro- and macroscopic modeling of crowding and pushing in corridors. Networks & Heterogeneous Media, 2020, 15 (3) : 405-426. doi: 10.3934/nhm.2020025

[12]

Pierre Degond, Cécile Appert-Rolland, Julien Pettré, Guy Theraulaz. Vision-based macroscopic pedestrian models. Kinetic & Related Models, 2013, 6 (4) : 809-839. doi: 10.3934/krm.2013.6.809

[13]

Vladimir Djordjić, Milana Pavić-Čolić, Nikola Spasojević. Polytropic gas modelling at kinetic and macroscopic levels. Kinetic & Related Models, 2021, 14 (3) : 483-522. doi: 10.3934/krm.2021013

[14]

Sara Bernardi, Gissell Estrada-Rodriguez, Heiko Gimperlein, Kevin J. Painter. Macroscopic descriptions of follower-leader systems. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021035

[15]

Lei Jing, Jiawei Sun. Global existence and long time behavior of the Ellipsoidal-Statistical-Fokker-Planck model for diatomic gases. Kinetic & Related Models, 2020, 13 (2) : 373-400. doi: 10.3934/krm.2020013

[16]

Jijiang Sun, Chun-Lei Tang. Resonance problems for Kirchhoff type equations. Discrete & Continuous Dynamical Systems, 2013, 33 (5) : 2139-2154. doi: 10.3934/dcds.2013.33.2139

[17]

Sergiu Aizicovici, Nikolaos S. Papageorgiou, Vasile Staicu. Nonlinear Dirichlet problems with double resonance. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1147-1168. doi: 10.3934/cpaa.2017056

[18]

Leszek Gasiński, Nikolaos S. Papageorgiou. Dirichlet $(p,q)$-equations at resonance. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2037-2060. doi: 10.3934/dcds.2014.34.2037

[19]

D. Bonheure, C. Fabry. A variational approach to resonance for asymmetric oscillators. Communications on Pure & Applied Analysis, 2007, 6 (1) : 163-181. doi: 10.3934/cpaa.2007.6.163

[20]

Philip Korman. Curves of equiharmonic solutions, and problems at resonance. Discrete & Continuous Dynamical Systems, 2014, 34 (7) : 2847-2860. doi: 10.3934/dcds.2014.34.2847

 Impact Factor: 

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]