2011, 2011(Special): 589-600. doi: 10.3934/proc.2011.2011.589

Distributed mathematical models of undetermined "without preference" motion of traffic flow


Institute of Mathematical Sciences and Information Technologies, University of Liepaja, Transport and Telecommunication Institute, 1 Lomonosov Street, Riga LV-1019, Latvia


Department of Mechanics and Mathematics, Baku State University, 23 Academician Zahid Xalilov Street, Baku AZ-1073/1, Azerbaidjan

Received  August 2010 Revised  April 2011 Published  October 2011

Present work proceeds non-deterministic motion of the two-dimensional (2D) vehicular traffic flow, where the traffic flow is assumed as flow of particles in the investigated environment with allowed motion in both forward and opposite directions. Besides, it is assumed that at any fixed time interval in the 2D flow, vehicles could change its positions on the road to any arbitrary placements at the de ned probabilities, even they might be not the neighbouring ones. Such a non-deterministic motion of 2D traffic flow will be named as motion "without preference". Under the pointed assumptions, first it is constructed the non-deterministic discrete mathimatical model, and later by means f using the principle of continuous system there are applied limiting transitions to the constructed discrete model. As a result nondeterministic continuous model in the form of initial-boundary value problem for the integro-di fferential equation is elaborated. In addition probabilistic interpretations of the constructed models and the received results are given.
Citation: Sharif E. Guseynov, Shirmail G. Bagirov. Distributed mathematical models of undetermined "without preference" motion of traffic flow. Conference Publications, 2011, 2011 (Special) : 589-600. doi: 10.3934/proc.2011.2011.589

Michael Herty, J.-P. Lebacque, S. Moutari. A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4 (4) : 813-826. doi: 10.3934/nhm.2009.4.813


Michael Herty, S. Moutari, M. Rascle. Optimization criteria for modelling intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2006, 1 (2) : 275-294. doi: 10.3934/nhm.2006.1.275


Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803


Michael Herty, Lorenzo Pareschi, Mohammed Seaïd. Enskog-like discrete velocity models for vehicular traffic flow. Networks and Heterogeneous Media, 2007, 2 (3) : 481-496. doi: 10.3934/nhm.2007.2.481


Pierre Degond, Marcello Delitala. Modelling and simulation of vehicular traffic jam formation. Kinetic and Related Models, 2008, 1 (2) : 279-293. doi: 10.3934/krm.2008.1.279


Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1869-1888. doi: 10.3934/dcdsb.2014.19.1869


Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435


Florent Berthelin, Paola Goatin. Regularity results for the solutions of a non-local model of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3197-3213. doi: 10.3934/dcds.2019132


Felisia Angela Chiarello, Paola Goatin. Non-local multi-class traffic flow models. Networks and Heterogeneous Media, 2019, 14 (2) : 371-387. doi: 10.3934/nhm.2019015


Michael Herty, Elisa Iacomini. Uncertainty quantification in hierarchical vehicular flow models. Kinetic and Related Models, 2022, 15 (2) : 239-256. doi: 10.3934/krm.2022006


Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517


Samuel N. Cohen, Lukasz Szpruch. On Markovian solutions to Markov Chain BSDEs. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 257-269. doi: 10.3934/naco.2012.2.257


Juntao Yang, Viet Ha Hoang. Multilevel Markov Chain Monte Carlo for Bayesian inverse problem for Navier-Stokes equation. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022033


Yanqing Liu, Yanyan Yin, Kok Lay Teo, Song Wang, Fei Liu. Probabilistic control of Markov jump systems by scenario optimization approach. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1447-1453. doi: 10.3934/jimo.2018103


Jan Friedrich, Oliver Kolb, Simone Göttlich. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. Networks and Heterogeneous Media, 2018, 13 (4) : 531-547. doi: 10.3934/nhm.2018024


Alexander Kurganov, Anthony Polizzi. Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics. Networks and Heterogeneous Media, 2009, 4 (3) : 431-451. doi: 10.3934/nhm.2009.4.431


Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks and Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107


Yacine Chitour, Benedetto Piccoli. Traffic circles and timing of traffic lights for cars flow. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 599-630. doi: 10.3934/dcdsb.2005.5.599


Michel Benaim, Morris W. Hirsch. Chain recurrence in surface flows. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 1-16. doi: 10.3934/dcds.1995.1.1


Yunhua Zhou. The local $C^1$-density of stable ergodicity. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2621-2629. doi: 10.3934/dcds.2013.33.2621

 Impact Factor: 


  • PDF downloads (37)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]