
Previous Article
New regularizing approach to determining the influence coefficient matrix for gasturbine engines
 PROC Home
 This Issue

Next Article
Distributed mathematical models of undetermined "without preference" motion of traffic flow
On continuous models of current stock of divisible productions
1.  Institute of Mathematical Sciences and Information Technologies, University of Liepaja, Transport and Telecommunication Institute, 1 Lomonosov Street, Riga LV1019, Latvia 
2.  Transport and Telecommunication Institute, 1 Lomonosov Street, Riga LV1019, Latvia, Latvia 
[1] 
Ata Allah Taleizadeh, Hadi Samimi, Biswajit Sarkar, Babak Mohammadi. Stochastic machine breakdown and discrete delivery in an imperfect inventoryproduction system. Journal of Industrial & Management Optimization, 2017, 13 (3) : 15111535. doi: 10.3934/jimo.2017005 
[2] 
Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial & Management Optimization, 2016, 12 (3) : 11531172. doi: 10.3934/jimo.2016.12.1153 
[3] 
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. A twoechelon inventory model with stockdependent demand and variable holding cost for deteriorating items. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 2150. doi: 10.3934/naco.2017002 
[4] 
Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. Ergodic control for a mean reverting inventory model. Journal of Industrial & Management Optimization, 2018, 14 (3) : 857876. doi: 10.3934/jimo.2017079 
[5] 
Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578588. doi: 10.3934/proc.2011.2011.578 
[6] 
Magfura Pervin, Sankar Kumar Roy, Gerhard Wilhelm Weber. Multiitem deteriorating twoechelon inventory model with price and stockdependent demand: A tradecredit policy. Journal of Industrial & Management Optimization, 2019, 15 (3) : 13451373. doi: 10.3934/jimo.2018098 
[7] 
ChuiYu Chiu, MingFeng Yang, ChungJung Tang, Yi Lin. Integrated imperfect production inventory model under permissible delay in payments depending on the order quantity. Journal of Industrial & Management Optimization, 2013, 9 (4) : 945965. doi: 10.3934/jimo.2013.9.945 
[8] 
Xin Zhou, Liangping Shi, Bingzhi Huang. Integrated inventory model with stochastic lead time and controllable variability for milk runs. Journal of Industrial & Management Optimization, 2012, 8 (3) : 657672. doi: 10.3934/jimo.2012.8.657 
[9] 
Roberta Ghezzi, Benedetto Piccoli. Optimal control of a multilevel dynamic model for biofuel production. Mathematical Control & Related Fields, 2017, 7 (2) : 235257. doi: 10.3934/mcrf.2017008 
[10] 
Urszula Ledzewicz, Behrooz Amini, Heinz Schättler. Dynamics and control of a mathematical model for metronomic chemotherapy. Mathematical Biosciences & Engineering, 2015, 12 (6) : 12571275. doi: 10.3934/mbe.2015.12.1257 
[11] 
Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations & Control Theory, 2019, 8 (4) : 883902. doi: 10.3934/eect.2019043 
[12] 
Rainer Picard. On a comprehensive class of linear material laws in classical mathematical physics. Discrete & Continuous Dynamical Systems  S, 2010, 3 (2) : 339349. doi: 10.3934/dcdss.2010.3.339 
[13] 
Wei Liu, Shiji Song, Cheng Wu. Singleperiod inventory model with discrete stochastic demand based on prospect theory. Journal of Industrial & Management Optimization, 2012, 8 (3) : 577590. doi: 10.3934/jimo.2012.8.577 
[14] 
Fredi Tröltzsch, Alberto Valli. Optimal voltage control of nonstationary eddy current problems. Mathematical Control & Related Fields, 2018, 8 (1) : 3556. doi: 10.3934/mcrf.2018002 
[15] 
Sanjoy Kumar Paul, Ruhul Sarker, Daryl Essam. Managing risk and disruption in productioninventory and supply chain systems: A review. Journal of Industrial & Management Optimization, 2016, 12 (3) : 10091029. doi: 10.3934/jimo.2016.12.1009 
[16] 
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems  B, 2013, 18 (7) : 19091927. doi: 10.3934/dcdsb.2013.18.1909 
[17] 
V. Lanza, D. Ambrosi, L. Preziosi. Exogenous control of vascular network formation in vitro: a mathematical model. Networks & Heterogeneous Media, 2006, 1 (4) : 621637. doi: 10.3934/nhm.2006.1.621 
[18] 
Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 12231240. doi: 10.3934/mbe.2016040 
[19] 
Colette Calmelet, John Hotchkiss, Philip Crooke. A mathematical model for antibiotic control of bacteria in peritoneal dialysis associated peritonitis. Mathematical Biosciences & Engineering, 2014, 11 (6) : 14491464. doi: 10.3934/mbe.2014.11.1449 
[20] 
Michael Grinfeld, Harbir Lamba, Rod Cross. A mesoscopic stock market model with hysteretic agents. Discrete & Continuous Dynamical Systems  B, 2013, 18 (2) : 403415. doi: 10.3934/dcdsb.2013.18.403 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]