2011, 2011(Special): 614-623. doi: 10.3934/proc.2011.2011.614

New regularizing approach to determining the influence coefficient matrix for gas-turbine engines

1. 

Institute of Mathematical Sciences and Information Technologies, University of Liepaja, Transport and Telecommunication Institute, 1 Lomonosov Street, Riga LV-1019, Latvia

2. 

Transport and Telecommunication Institute, 1 Lomonosov Street, Riga LV-1019, Latvia

Received  July 2010 Revised  April 2011 Published  October 2011

This paper presents the new approach to the formation of the gas turbine engine diagnostic matrix employing Tikhonov regularization method and taking into account the compressor properties shift under the condition of engine air-gas channel alteration. This method allows eliminating the certain inadequacy of the diagnostic matrices in some cases and removes the restrictions on their implementation for gas turbine engines diagnostics. The elabo- rated regularization algorithm of the calculation-identi cation matrix reversion permits to determine the diagnostic matrix persistently. The suggested method of registration of the compressor properties shift allows providing the adequacy of the engine mathematical model taking into consideration the depreciation of the engine and air-gas channel and consequently obtaining the adequate diagnostic matrix. It is o ered to employ the obtained diagnostic model in the on-board systems of the gas turbine engine control and diagnostics.
Citation: Sharif E. Guseynov, Sergey M. Yunusov. New regularizing approach to determining the influence coefficient matrix for gas-turbine engines. Conference Publications, 2011, 2011 (Special) : 614-623. doi: 10.3934/proc.2011.2011.614
[1]

Stefan Kindermann, Andreas Neubauer. On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization. Inverse Problems and Imaging, 2008, 2 (2) : 291-299. doi: 10.3934/ipi.2008.2.291

[2]

Andreas Neubauer. On Tikhonov-type regularization with approximated penalty terms. Inverse Problems and Imaging, 2021, 15 (5) : 1035-1050. doi: 10.3934/ipi.2021027

[3]

Abhishake Rastogi. Tikhonov regularization with oversmoothing penalty for nonlinear statistical inverse problems. Communications on Pure and Applied Analysis, 2020, 19 (8) : 4111-4126. doi: 10.3934/cpaa.2020183

[4]

Vinicius Albani, Adriano De Cezaro, Jorge P. Zubelli. On the choice of the Tikhonov regularization parameter and the discretization level: A discrepancy-based strategy. Inverse Problems and Imaging, 2016, 10 (1) : 1-25. doi: 10.3934/ipi.2016.10.1

[5]

Bernard Ducomet, Alexander Zlotnik. On a regularization of the magnetic gas dynamics system of equations. Kinetic and Related Models, 2013, 6 (3) : 533-543. doi: 10.3934/krm.2013.6.533

[6]

Guoliang Ju, Can Chen, Rongliang Chen, Jingzhi Li, Kaitai Li, Shaohui Zhang. Numerical simulation for 3D flow in flow channel of aeroengine turbine fan based on dimension splitting method. Electronic Research Archive, 2020, 28 (2) : 837-851. doi: 10.3934/era.2020043

[7]

Vinicius Albani, Adriano De Cezaro. A connection between uniqueness of minimizers in Tikhonov-type regularization and Morozov-like discrepancy principles. Inverse Problems and Imaging, 2019, 13 (1) : 211-229. doi: 10.3934/ipi.2019012

[8]

Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Problems and Imaging, 2017, 11 (2) : 221-246. doi: 10.3934/ipi.2017011

[9]

Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems and Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008

[10]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control and Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[11]

Thorsten Hohage, Mihaela Pricop. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Problems and Imaging, 2008, 2 (2) : 271-290. doi: 10.3934/ipi.2008.2.271

[12]

De-han Chen, Daijun jiang. Convergence rates of Tikhonov regularization for recovering growth rates in a Lotka-Volterra competition model with diffusion. Inverse Problems and Imaging, 2021, 15 (5) : 951-974. doi: 10.3934/ipi.2021023

[13]

Zhengshan Dong, Jianli Chen, Wenxing Zhu. Homotopy method for matrix rank minimization based on the matrix hard thresholding method. Numerical Algebra, Control and Optimization, 2019, 9 (2) : 211-224. doi: 10.3934/naco.2019015

[14]

Bernd Hofmann, Barbara Kaltenbacher, Elena Resmerita. Lavrentiev's regularization method in Hilbert spaces revisited. Inverse Problems and Imaging, 2016, 10 (3) : 741-764. doi: 10.3934/ipi.2016019

[15]

Yuan Shen, Xin Liu. An alternating minimization method for matrix completion problems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1757-1772. doi: 10.3934/dcdss.2020103

[16]

Huiyuan Guo, Quan Yu, Xinzhen Zhang, Lulu Cheng. Low rank matrix minimization with a truncated difference of nuclear norm and Frobenius norm regularization. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022045

[17]

Fengmin Xu, Yanfei Wang. Recovery of seismic wavefields by an lq-norm constrained regularization method. Inverse Problems and Imaging, 2018, 12 (5) : 1157-1172. doi: 10.3934/ipi.2018048

[18]

Tim Hoheisel, Maxime Laborde, Adam Oberman. A regularization interpretation of the proximal point method for weakly convex functions. Journal of Dynamics and Games, 2020, 7 (1) : 79-96. doi: 10.3934/jdg.2020005

[19]

Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial and Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421

[20]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

 Impact Factor: 

Metrics

  • PDF downloads (106)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]