2013, 2013(special): 1-10. doi: 10.3934/proc.2013.2013.1

Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise

1. 

Department of Mathematics, New Mexico Institute of Mining and Technology, Socorro, NM 87801

Received  September 2012 Revised  December 2012 Published  November 2013

In this paper, we prove the existence and uniqueness of random attractors for the FitzHugh-Nagumo system defined on $\mathbb{R}^n$ driven by both deterministic non-autonomous forcing and multiplicative noise. The periodicity of random attractors is established when the system is perturbed by time periodic forcing. We also prove the upper semicontinuity of random attractors when the intensity of noise approaches zero.
Citation: Abiti Adili, Bixiang Wang. Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise. Conference Publications, 2013, 2013 (special) : 1-10. doi: 10.3934/proc.2013.2013.1
References:
[1]

P.W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, {\em Stoch. Dyn.}, 6 (2006), 1.   Google Scholar

[2]

P.W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, {\em J. Differential Equations}, 246 (2009), 845.   Google Scholar

[3]

T. Caraballo, M.J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions,, {\em Discrete Contin. Dyn. Syst. Ser. B}, 14 (2010), 439.   Google Scholar

[4]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, {\em Probab. Th. Re. Fields}, 100 (1994), 365.   Google Scholar

[5]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary,, {\em Comm. Math. Sci.}, 1 (2003), 133.   Google Scholar

[6]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise,, {\em Stoch. Stoch. Rep.}, 59 (1996), 21.   Google Scholar

[7]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, {\em International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior}, (1992), 185.   Google Scholar

[8]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, {\em J. Differential Equations}, 253 (2012), 1544.   Google Scholar

[9]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms,, arXiv:1205.4658v1, (2012).   Google Scholar

[10]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems, Series A,, {\bf 34} (2014), 34 (2014), 269.   Google Scholar

show all references

References:
[1]

P.W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, {\em Stoch. Dyn.}, 6 (2006), 1.   Google Scholar

[2]

P.W. Bates, K. Lu and B. Wang, Random attractors for stochastic reaction-diffusion equations on unbounded domains,, {\em J. Differential Equations}, 246 (2009), 845.   Google Scholar

[3]

T. Caraballo, M.J. Garrido-Atienza, B. Schmalfuss and J. Valero, Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions,, {\em Discrete Contin. Dyn. Syst. Ser. B}, 14 (2010), 439.   Google Scholar

[4]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, {\em Probab. Th. Re. Fields}, 100 (1994), 365.   Google Scholar

[5]

J. Duan and B. Schmalfuss, The 3D quasigeostrophic fluid dynamics under random forcing on boundary,, {\em Comm. Math. Sci.}, 1 (2003), 133.   Google Scholar

[6]

F. Flandoli and B. Schmalfuss, Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise,, {\em Stoch. Stoch. Rep.}, 59 (1996), 21.   Google Scholar

[7]

B. Schmalfuss, Backward cocycles and attractors of stochastic differential equations,, {\em International Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and Global Behavior}, (1992), 185.   Google Scholar

[8]

B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems,, {\em J. Differential Equations}, 253 (2012), 1544.   Google Scholar

[9]

B. Wang, Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms,, arXiv:1205.4658v1, (2012).   Google Scholar

[10]

B. Wang, Random attractors for non-autonomous stochastic wave equations with multiplicative noise, Discrete and Continuous Dynamical Systems, Series A,, {\bf 34} (2014), 34 (2014), 269.   Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[3]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[6]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[7]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[8]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[9]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[10]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[13]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[14]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[15]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[16]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[17]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[18]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[19]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[20]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

 Impact Factor: 

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]