• Previous Article
    Stochastic geodesics and forward-backward stochastic differential equations on Lie groups
  • PROC Home
  • This Issue
  • Next Article
    Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions
2013, 2013(special): 105-113. doi: 10.3934/proc.2013.2013.105

New class of exact solutions for the equations of motion of a chain of $n$ rigid bodies

1. 

Department of Mathematics, Engineering, and Computer Science, City University of New York, LaGCC, Long Island City, NY 11101, United States

Received  September 2012 Published  November 2013

In this paper we construct a new class of nonstationary exact solutions for the equations of motion of a classical model of multibody dynamics -- a chain of $n$ heavy rigid bodies that are sequentially coupled by ideal spherical hinges. We establish sufficient conditions for the existence of the solutions and show how the equations of motion can be reduced to quadratures in the case when these conditions are fulfilled.
Citation: Dmitriy Chebanov. New class of exact solutions for the equations of motion of a chain of $n$ rigid bodies. Conference Publications, 2013, 2013 (special) : 105-113. doi: 10.3934/proc.2013.2013.105
References:
[1]

D. Bobylev, On a certain particular solution of the differential equations of rotation of a heavy rigid body about a fixed point,, Trudy Otdel. Fiz. Nauk Obsc. Estestvozn., 8 (1896), 21.   Google Scholar

[2]

A.V. Borisov and I.S. Mamaev, "Dynamics of a rigid body. Hamiltonian methods, integrability, chaos,", Institute of Computer Science, (2005).   Google Scholar

[3]

D.A. Chebanov, On a generalization of the problem of similar motions of a system of Lagrange gyroscopes,, Mekh. Tverd. Tela, 27 (1995), 57.   Google Scholar

[4]

D.A. Chebanov, New dynamical properties of a system of Lagrange gyroscopes,, Proceedings of the Institute of Applied Mathematics and Mechanics, 5 (2000), 172.   Google Scholar

[5]

D. Chebanov, Exact solutions for motion equations of symmetric gyros system,, Multibody Syst. Dyn., 6 (2001), 39.   Google Scholar

[6]

D.A. Chebanov, A new class of nonstationary motions of a system of heavy Lagrange tops with a non-planar configuration of the systems's skeleton,, Mekh. Tverd. Tela, 41 (2011), 244.   Google Scholar

[7]

L. Euler, Du mouvement de rotation des corps solides autour d'un axe variable,, Memoires de l'Academie des Sciences de Berlin, XIV (1765), 154.   Google Scholar

[8]

G.V. Gorr, Precessional motions in rigid body dynamics and the dynamics of systems of coupled rigid bodies,, J. Appl. Math. Mech., 67 (2003), 511.   Google Scholar

[9]

G.V. Gorr, L.V. Kudryashova, and L.A. Stepanova, "Classical problems in the theory of solid bodies. Their development and current state,", Naukova dumka, (1978).   Google Scholar

[10]

G.V. Gorr and V.N. Rubanovskii, A new class of motions of a system of heavy freely connected rigid bodies,, J. Appl. Math. Mech., 52 (1988), 551.   Google Scholar

[11]

P.V. Kharlamov, The equations of motion of a system of rigid bodies,, Mekh. Tverd. Tela, 4 (1972), 52.   Google Scholar

[12]

P.V. Kharlamov, Some classes of exact solutions of the problem of the motion of a system of Lagrange gyroscopes,, Mat. Fiz., 32 (1982), 63.   Google Scholar

[13]

E.I. Kharlamova, A survey of exact solutions of problems of the motion of systems of coupled rigid bodies,, Mekh. Tverd. Tela, 26 (1998), 125.   Google Scholar

[14]

S.V. Kovalevskaya, Sur le probleme de la rotation d'un corps solide autour d'un point fixe,, Acta Math., 12 (1889), 177.   Google Scholar

[15]

J.L. Lagrange, "Mechanique Analitique,", Veuve Desaint, (1815).   Google Scholar

[16]

E. Leimanis, "The General Problem of the Motion of Coupled Rigid Bodies about Fixed Point,", Springer-Verlag, (1965).   Google Scholar

[17]

L. Lilov and N. Vasileva, Steady motion of a system of Lagrange gyroscopes with a tree structure,, Teoret. Prilozhna Mekh., XV (1984), 24.   Google Scholar

[18]

A.Ya. Savchenko and M.E. Lesina, Particular solution for motion equations of Lagrange gyroscopes system,, Mekh. Tverd. Tela, 5 (1973), 27.   Google Scholar

[19]

N. Sreenath, Y.G. Oh, P.S. Krishnaprasad, and J.E. Marsden, The dynamics of coupled planar rigid bodies. Part I: Reduction, equilibria and stability,, Dynam. Stability Systems, 3 (1988), 25.   Google Scholar

[20]

V.A. Steklov, A certain case of motion of a heavy rigid body having a fixed point,, Trudy Otdel. Fiz. Nauk Obsc. Lyubit. Estestvozn., 8 (1896), 19.   Google Scholar

[21]

J. Wittenburg, "Dynamics of Multibody Systems,", Springer-Verlag, (2008).   Google Scholar

show all references

References:
[1]

D. Bobylev, On a certain particular solution of the differential equations of rotation of a heavy rigid body about a fixed point,, Trudy Otdel. Fiz. Nauk Obsc. Estestvozn., 8 (1896), 21.   Google Scholar

[2]

A.V. Borisov and I.S. Mamaev, "Dynamics of a rigid body. Hamiltonian methods, integrability, chaos,", Institute of Computer Science, (2005).   Google Scholar

[3]

D.A. Chebanov, On a generalization of the problem of similar motions of a system of Lagrange gyroscopes,, Mekh. Tverd. Tela, 27 (1995), 57.   Google Scholar

[4]

D.A. Chebanov, New dynamical properties of a system of Lagrange gyroscopes,, Proceedings of the Institute of Applied Mathematics and Mechanics, 5 (2000), 172.   Google Scholar

[5]

D. Chebanov, Exact solutions for motion equations of symmetric gyros system,, Multibody Syst. Dyn., 6 (2001), 39.   Google Scholar

[6]

D.A. Chebanov, A new class of nonstationary motions of a system of heavy Lagrange tops with a non-planar configuration of the systems's skeleton,, Mekh. Tverd. Tela, 41 (2011), 244.   Google Scholar

[7]

L. Euler, Du mouvement de rotation des corps solides autour d'un axe variable,, Memoires de l'Academie des Sciences de Berlin, XIV (1765), 154.   Google Scholar

[8]

G.V. Gorr, Precessional motions in rigid body dynamics and the dynamics of systems of coupled rigid bodies,, J. Appl. Math. Mech., 67 (2003), 511.   Google Scholar

[9]

G.V. Gorr, L.V. Kudryashova, and L.A. Stepanova, "Classical problems in the theory of solid bodies. Their development and current state,", Naukova dumka, (1978).   Google Scholar

[10]

G.V. Gorr and V.N. Rubanovskii, A new class of motions of a system of heavy freely connected rigid bodies,, J. Appl. Math. Mech., 52 (1988), 551.   Google Scholar

[11]

P.V. Kharlamov, The equations of motion of a system of rigid bodies,, Mekh. Tverd. Tela, 4 (1972), 52.   Google Scholar

[12]

P.V. Kharlamov, Some classes of exact solutions of the problem of the motion of a system of Lagrange gyroscopes,, Mat. Fiz., 32 (1982), 63.   Google Scholar

[13]

E.I. Kharlamova, A survey of exact solutions of problems of the motion of systems of coupled rigid bodies,, Mekh. Tverd. Tela, 26 (1998), 125.   Google Scholar

[14]

S.V. Kovalevskaya, Sur le probleme de la rotation d'un corps solide autour d'un point fixe,, Acta Math., 12 (1889), 177.   Google Scholar

[15]

J.L. Lagrange, "Mechanique Analitique,", Veuve Desaint, (1815).   Google Scholar

[16]

E. Leimanis, "The General Problem of the Motion of Coupled Rigid Bodies about Fixed Point,", Springer-Verlag, (1965).   Google Scholar

[17]

L. Lilov and N. Vasileva, Steady motion of a system of Lagrange gyroscopes with a tree structure,, Teoret. Prilozhna Mekh., XV (1984), 24.   Google Scholar

[18]

A.Ya. Savchenko and M.E. Lesina, Particular solution for motion equations of Lagrange gyroscopes system,, Mekh. Tverd. Tela, 5 (1973), 27.   Google Scholar

[19]

N. Sreenath, Y.G. Oh, P.S. Krishnaprasad, and J.E. Marsden, The dynamics of coupled planar rigid bodies. Part I: Reduction, equilibria and stability,, Dynam. Stability Systems, 3 (1988), 25.   Google Scholar

[20]

V.A. Steklov, A certain case of motion of a heavy rigid body having a fixed point,, Trudy Otdel. Fiz. Nauk Obsc. Lyubit. Estestvozn., 8 (1896), 19.   Google Scholar

[21]

J. Wittenburg, "Dynamics of Multibody Systems,", Springer-Verlag, (2008).   Google Scholar

[1]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[2]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[5]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[6]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[7]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[10]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[11]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[12]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[16]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[17]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[18]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[19]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

 Impact Factor: 

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]