• Previous Article
    Stochastic geodesics and forward-backward stochastic differential equations on Lie groups
  • PROC Home
  • This Issue
  • Next Article
    Bifurcation to positive solutions in BVPs of logistic type with nonlinear indefinite mixed boundary conditions
2013, 2013(special): 105-113. doi: 10.3934/proc.2013.2013.105

New class of exact solutions for the equations of motion of a chain of $n$ rigid bodies

1. 

Department of Mathematics, Engineering, and Computer Science, City University of New York, LaGCC, Long Island City, NY 11101, United States

Received  September 2012 Published  November 2013

In this paper we construct a new class of nonstationary exact solutions for the equations of motion of a classical model of multibody dynamics -- a chain of $n$ heavy rigid bodies that are sequentially coupled by ideal spherical hinges. We establish sufficient conditions for the existence of the solutions and show how the equations of motion can be reduced to quadratures in the case when these conditions are fulfilled.
Citation: Dmitriy Chebanov. New class of exact solutions for the equations of motion of a chain of $n$ rigid bodies. Conference Publications, 2013, 2013 (special) : 105-113. doi: 10.3934/proc.2013.2013.105
References:
[1]

D. Bobylev, On a certain particular solution of the differential equations of rotation of a heavy rigid body about a fixed point,, Trudy Otdel. Fiz. Nauk Obsc. Estestvozn., 8 (1896), 21.   Google Scholar

[2]

A.V. Borisov and I.S. Mamaev, "Dynamics of a rigid body. Hamiltonian methods, integrability, chaos,", Institute of Computer Science, (2005).   Google Scholar

[3]

D.A. Chebanov, On a generalization of the problem of similar motions of a system of Lagrange gyroscopes,, Mekh. Tverd. Tela, 27 (1995), 57.   Google Scholar

[4]

D.A. Chebanov, New dynamical properties of a system of Lagrange gyroscopes,, Proceedings of the Institute of Applied Mathematics and Mechanics, 5 (2000), 172.   Google Scholar

[5]

D. Chebanov, Exact solutions for motion equations of symmetric gyros system,, Multibody Syst. Dyn., 6 (2001), 39.   Google Scholar

[6]

D.A. Chebanov, A new class of nonstationary motions of a system of heavy Lagrange tops with a non-planar configuration of the systems's skeleton,, Mekh. Tverd. Tela, 41 (2011), 244.   Google Scholar

[7]

L. Euler, Du mouvement de rotation des corps solides autour d'un axe variable,, Memoires de l'Academie des Sciences de Berlin, XIV (1765), 154.   Google Scholar

[8]

G.V. Gorr, Precessional motions in rigid body dynamics and the dynamics of systems of coupled rigid bodies,, J. Appl. Math. Mech., 67 (2003), 511.   Google Scholar

[9]

G.V. Gorr, L.V. Kudryashova, and L.A. Stepanova, "Classical problems in the theory of solid bodies. Their development and current state,", Naukova dumka, (1978).   Google Scholar

[10]

G.V. Gorr and V.N. Rubanovskii, A new class of motions of a system of heavy freely connected rigid bodies,, J. Appl. Math. Mech., 52 (1988), 551.   Google Scholar

[11]

P.V. Kharlamov, The equations of motion of a system of rigid bodies,, Mekh. Tverd. Tela, 4 (1972), 52.   Google Scholar

[12]

P.V. Kharlamov, Some classes of exact solutions of the problem of the motion of a system of Lagrange gyroscopes,, Mat. Fiz., 32 (1982), 63.   Google Scholar

[13]

E.I. Kharlamova, A survey of exact solutions of problems of the motion of systems of coupled rigid bodies,, Mekh. Tverd. Tela, 26 (1998), 125.   Google Scholar

[14]

S.V. Kovalevskaya, Sur le probleme de la rotation d'un corps solide autour d'un point fixe,, Acta Math., 12 (1889), 177.   Google Scholar

[15]

J.L. Lagrange, "Mechanique Analitique,", Veuve Desaint, (1815).   Google Scholar

[16]

E. Leimanis, "The General Problem of the Motion of Coupled Rigid Bodies about Fixed Point,", Springer-Verlag, (1965).   Google Scholar

[17]

L. Lilov and N. Vasileva, Steady motion of a system of Lagrange gyroscopes with a tree structure,, Teoret. Prilozhna Mekh., XV (1984), 24.   Google Scholar

[18]

A.Ya. Savchenko and M.E. Lesina, Particular solution for motion equations of Lagrange gyroscopes system,, Mekh. Tverd. Tela, 5 (1973), 27.   Google Scholar

[19]

N. Sreenath, Y.G. Oh, P.S. Krishnaprasad, and J.E. Marsden, The dynamics of coupled planar rigid bodies. Part I: Reduction, equilibria and stability,, Dynam. Stability Systems, 3 (1988), 25.   Google Scholar

[20]

V.A. Steklov, A certain case of motion of a heavy rigid body having a fixed point,, Trudy Otdel. Fiz. Nauk Obsc. Lyubit. Estestvozn., 8 (1896), 19.   Google Scholar

[21]

J. Wittenburg, "Dynamics of Multibody Systems,", Springer-Verlag, (2008).   Google Scholar

show all references

References:
[1]

D. Bobylev, On a certain particular solution of the differential equations of rotation of a heavy rigid body about a fixed point,, Trudy Otdel. Fiz. Nauk Obsc. Estestvozn., 8 (1896), 21.   Google Scholar

[2]

A.V. Borisov and I.S. Mamaev, "Dynamics of a rigid body. Hamiltonian methods, integrability, chaos,", Institute of Computer Science, (2005).   Google Scholar

[3]

D.A. Chebanov, On a generalization of the problem of similar motions of a system of Lagrange gyroscopes,, Mekh. Tverd. Tela, 27 (1995), 57.   Google Scholar

[4]

D.A. Chebanov, New dynamical properties of a system of Lagrange gyroscopes,, Proceedings of the Institute of Applied Mathematics and Mechanics, 5 (2000), 172.   Google Scholar

[5]

D. Chebanov, Exact solutions for motion equations of symmetric gyros system,, Multibody Syst. Dyn., 6 (2001), 39.   Google Scholar

[6]

D.A. Chebanov, A new class of nonstationary motions of a system of heavy Lagrange tops with a non-planar configuration of the systems's skeleton,, Mekh. Tverd. Tela, 41 (2011), 244.   Google Scholar

[7]

L. Euler, Du mouvement de rotation des corps solides autour d'un axe variable,, Memoires de l'Academie des Sciences de Berlin, XIV (1765), 154.   Google Scholar

[8]

G.V. Gorr, Precessional motions in rigid body dynamics and the dynamics of systems of coupled rigid bodies,, J. Appl. Math. Mech., 67 (2003), 511.   Google Scholar

[9]

G.V. Gorr, L.V. Kudryashova, and L.A. Stepanova, "Classical problems in the theory of solid bodies. Their development and current state,", Naukova dumka, (1978).   Google Scholar

[10]

G.V. Gorr and V.N. Rubanovskii, A new class of motions of a system of heavy freely connected rigid bodies,, J. Appl. Math. Mech., 52 (1988), 551.   Google Scholar

[11]

P.V. Kharlamov, The equations of motion of a system of rigid bodies,, Mekh. Tverd. Tela, 4 (1972), 52.   Google Scholar

[12]

P.V. Kharlamov, Some classes of exact solutions of the problem of the motion of a system of Lagrange gyroscopes,, Mat. Fiz., 32 (1982), 63.   Google Scholar

[13]

E.I. Kharlamova, A survey of exact solutions of problems of the motion of systems of coupled rigid bodies,, Mekh. Tverd. Tela, 26 (1998), 125.   Google Scholar

[14]

S.V. Kovalevskaya, Sur le probleme de la rotation d'un corps solide autour d'un point fixe,, Acta Math., 12 (1889), 177.   Google Scholar

[15]

J.L. Lagrange, "Mechanique Analitique,", Veuve Desaint, (1815).   Google Scholar

[16]

E. Leimanis, "The General Problem of the Motion of Coupled Rigid Bodies about Fixed Point,", Springer-Verlag, (1965).   Google Scholar

[17]

L. Lilov and N. Vasileva, Steady motion of a system of Lagrange gyroscopes with a tree structure,, Teoret. Prilozhna Mekh., XV (1984), 24.   Google Scholar

[18]

A.Ya. Savchenko and M.E. Lesina, Particular solution for motion equations of Lagrange gyroscopes system,, Mekh. Tverd. Tela, 5 (1973), 27.   Google Scholar

[19]

N. Sreenath, Y.G. Oh, P.S. Krishnaprasad, and J.E. Marsden, The dynamics of coupled planar rigid bodies. Part I: Reduction, equilibria and stability,, Dynam. Stability Systems, 3 (1988), 25.   Google Scholar

[20]

V.A. Steklov, A certain case of motion of a heavy rigid body having a fixed point,, Trudy Otdel. Fiz. Nauk Obsc. Lyubit. Estestvozn., 8 (1896), 19.   Google Scholar

[21]

J. Wittenburg, "Dynamics of Multibody Systems,", Springer-Verlag, (2008).   Google Scholar

[1]

Joris Vankerschaver, Eva Kanso, Jerrold E. Marsden. The geometry and dynamics of interacting rigid bodies and point vortices. Journal of Geometric Mechanics, 2009, 1 (2) : 223-266. doi: 10.3934/jgm.2009.1.223

[2]

Mohammed Aassila. Exact boundary controllability of a coupled system. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 665-672. doi: 10.3934/dcds.2000.6.665

[3]

Tatsien Li, Bopeng Rao, Yimin Wei. Generalized exact boundary synchronization for a coupled system of wave equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2893-2905. doi: 10.3934/dcds.2014.34.2893

[4]

Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373

[5]

Giulio G. Giusteri, Alfredo Marzocchi, Alessandro Musesti. Nonlinear free fall of one-dimensional rigid bodies in hyperviscous fluids. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2145-2157. doi: 10.3934/dcdsb.2014.19.2145

[6]

Christopher Cox, Renato Feres. Differential geometry of rigid bodies collisions and non-standard billiards. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6065-6099. doi: 10.3934/dcds.2016065

[7]

Long Hu, Tatsien Li, Bopeng Rao. Exact boundary synchronization for a coupled system of 1-D wave equations with coupled boundary conditions of dissipative type. Communications on Pure & Applied Analysis, 2014, 13 (2) : 881-901. doi: 10.3934/cpaa.2014.13.881

[8]

Aleksa Srdanov, Radiša Stefanović, Aleksandra Janković, Dragan Milovanović. "Reducing the number of dimensions of the possible solution space" as a method for finding the exact solution of a system with a large number of unknowns. Mathematical Foundations of Computing, 2019, 2 (2) : 83-93. doi: 10.3934/mfc.2019007

[9]

Francisco Ortegón Gallego, María Teresa González Montesinos. Existence of a capacity solution to a coupled nonlinear parabolic--elliptic system. Communications on Pure & Applied Analysis, 2007, 6 (1) : 23-42. doi: 10.3934/cpaa.2007.6.23

[10]

Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417

[11]

Bernard Ducomet, Šárka Nečasová. On the motion of rigid bodies in an incompressible or compressible viscous fluid under the action of gravitational forces. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1193-1213. doi: 10.3934/dcdss.2013.6.1193

[12]

Liangming Chen, Ming Cao, Chuanjiang Li. Bearing rigidity and formation stabilization for multiple rigid bodies in $ SE(3) $. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 257-267. doi: 10.3934/naco.2019017

[13]

Belhassen Dehman, Jean-Pierre Raymond. Exact controllability for the Lamé system. Mathematical Control & Related Fields, 2015, 5 (4) : 743-760. doi: 10.3934/mcrf.2015.5.743

[14]

Jifeng Chu, Delia Ionescu-Kruse, Yanjuan Yang. Exact solution and instability for geophysical waves at arbitrary latitude. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4399-4414. doi: 10.3934/dcds.2019178

[15]

Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109

[16]

Tomáš Roubíček, Giuseppe Tomassetti. Dynamics of charged elastic bodies under diffusion at large strains. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019234

[17]

M. D. Todorov, C. I. Christov. Collision dynamics of circularly polarized solitons in nonintegrable coupled nonlinear Schrödinger system. Conference Publications, 2009, 2009 (Special) : 780-789. doi: 10.3934/proc.2009.2009.780

[18]

Hassan Ibrahim, Mustapha Jazar, Régis Monneau. Dynamics of dislocation densities in a bounded channel. Part I: smooth solutions to a singular coupled parabolic system. Communications on Pure & Applied Analysis, 2010, 9 (3) : 703-719. doi: 10.3934/cpaa.2010.9.703

[19]

Francesca Bucci, Igor Chueshov. Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 557-586. doi: 10.3934/dcds.2008.22.557

[20]

Richard H. Rand, Asok K. Sen. A numerical investigation of the dynamics of a system of two time-delay coupled relaxation oscillators. Communications on Pure & Applied Analysis, 2003, 2 (4) : 567-577. doi: 10.3934/cpaa.2003.2.567

 Impact Factor: 

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]