• Previous Article
    Global bifurcation diagrams of steady-states for a parabolic model related to a nuclear engineering problem
  • PROC Home
  • This Issue
  • Next Article
    Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise
2013, 2013(special): 11-19. doi: 10.3934/proc.2013.2013.11

Asymptotic behavior of a ratio-dependent predator-prey system with disease in the prey

1. 

Department of Information and Mathematics, Korea University, Jochiwon 339-700, South Korea, South Korea

2. 

Department of Mathematics Education, Cheongju University, Cheongju, Chungbuk 360-764, South Korea

Received  September 2012 Revised  January 2013 Published  November 2013

In this paper, we consider a ratio-dependent predator-prey model with disease in the prey under Neumann boundary condition. we construct a global attractor region for all time-dependent non-negative solutions of the system and investigate the asymptotic behavior of positive constant solution. Furthermore, we also study the asymptotic behavior of the non-negative equilibria.
Citation: Inkyung Ahn, Wonlyul Ko, Kimun Ryu. Asymptotic behavior of a ratio-dependent predator-prey system with disease in the prey. Conference Publications, 2013, 2013 (special) : 11-19. doi: 10.3934/proc.2013.2013.11
References:
[1]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio dependence,, J. Theor. Biol. 139 (1989), (1989), 311.   Google Scholar

[2]

R. Arditi, L. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent models,, American Naturalist 138 (1991), (1991), 1287.   Google Scholar

[3]

R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption,, Ecology 73 (1992), (1992), 1544.   Google Scholar

[4]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response,, J. Math. Anal. Appl. 257 (2001), (2001), 206.   Google Scholar

[5]

C. Cosner, D. L. DeAngelis, J. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators,, Theoret. Population Biol. 56 (1999), (1999), 65.   Google Scholar

[6]

A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson's blowflies as an example,, Ecology 73 (1992), (1992), 1552.   Google Scholar

[7]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1993).   Google Scholar

[8]

S. B. Hsu, T. W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system,, J. Math. Biol. 42 (2001), (2001), 489.   Google Scholar

[9]

S. B. Hsu, T. W. Hwang and Y. Kuang, Rich dynamics of a ratio-dependent one-prey two-predators model,, J. Math. Biol. 43 (2001), (2001), 377.   Google Scholar

[10]

S. B. Hsu, T. W. Hwang and Y. Kuang, A ratio-dependent food chain model and its applications to biological control,, Math. Biosci. 181 (2003), (2003), 55.   Google Scholar

[11]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system,, {\em J. Math. Biol.} 36 (1998), (1998), 389.   Google Scholar

[12]

Z. Lin and M. Pedersen, Stability in a diffusive food-chain model with Michaelis-Menten functional response,, Nonlinear Anal. 57(2004) 421-433., (2004), 421.   Google Scholar

[13]

P. Y. H. Pang and M. X. Wang, Stragey and stationary pattern in a three-species predator-prey model,, J. Differential Equations, (2004), 245.   Google Scholar

[14]

P. Y. H. Pang and M. X. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion,, Proc. Roy. Soc. Edinburgh Sect. A 133 (4) (2003), (2003), 919.   Google Scholar

[15]

C. V. Pao, Quasisolutions and global attractor of reaction-diffusion systems,, Nonlinear Anal. 26(1996), (1996), 1889.   Google Scholar

[16]

Y. Xiao and L. Chen, A ratio-dependent predator-prey model with disease in the prey,, Appl. Maths. Comp. 131(2002), (2002), 397.   Google Scholar

show all references

References:
[1]

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio dependence,, J. Theor. Biol. 139 (1989), (1989), 311.   Google Scholar

[2]

R. Arditi, L. R. Ginzburg and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent models,, American Naturalist 138 (1991), (1991), 1287.   Google Scholar

[3]

R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratio-dependent consumption,, Ecology 73 (1992), (1992), 1544.   Google Scholar

[4]

R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response,, J. Math. Anal. Appl. 257 (2001), (2001), 206.   Google Scholar

[5]

C. Cosner, D. L. DeAngelis, J. S. Ault and D. B. Olson, Effects of spatial grouping on the functional response of predators,, Theoret. Population Biol. 56 (1999), (1999), 65.   Google Scholar

[6]

A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson's blowflies as an example,, Ecology 73 (1992), (1992), 1552.   Google Scholar

[7]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1993).   Google Scholar

[8]

S. B. Hsu, T. W. Hwang and Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system,, J. Math. Biol. 42 (2001), (2001), 489.   Google Scholar

[9]

S. B. Hsu, T. W. Hwang and Y. Kuang, Rich dynamics of a ratio-dependent one-prey two-predators model,, J. Math. Biol. 43 (2001), (2001), 377.   Google Scholar

[10]

S. B. Hsu, T. W. Hwang and Y. Kuang, A ratio-dependent food chain model and its applications to biological control,, Math. Biosci. 181 (2003), (2003), 55.   Google Scholar

[11]

Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system,, {\em J. Math. Biol.} 36 (1998), (1998), 389.   Google Scholar

[12]

Z. Lin and M. Pedersen, Stability in a diffusive food-chain model with Michaelis-Menten functional response,, Nonlinear Anal. 57(2004) 421-433., (2004), 421.   Google Scholar

[13]

P. Y. H. Pang and M. X. Wang, Stragey and stationary pattern in a three-species predator-prey model,, J. Differential Equations, (2004), 245.   Google Scholar

[14]

P. Y. H. Pang and M. X. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion,, Proc. Roy. Soc. Edinburgh Sect. A 133 (4) (2003), (2003), 919.   Google Scholar

[15]

C. V. Pao, Quasisolutions and global attractor of reaction-diffusion systems,, Nonlinear Anal. 26(1996), (1996), 1889.   Google Scholar

[16]

Y. Xiao and L. Chen, A ratio-dependent predator-prey model with disease in the prey,, Appl. Maths. Comp. 131(2002), (2002), 397.   Google Scholar

[1]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[2]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[3]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[4]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[5]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[6]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[7]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[8]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[9]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[10]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[11]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[12]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[13]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[14]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[15]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[16]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

 Impact Factor: 

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]