2013, 2013(special): 115-121. doi: 10.3934/proc.2013.2013.115

Stochastic geodesics and forward-backward stochastic differential equations on Lie groups

1. 

Grupo de Física-Matemática da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal

2. 

GFMUL and Departamento de Matemática IST-UTL, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Received  September 2012 Revised  March 2013 Published  November 2013

We describe how to generalize to the stochastic case the notion of geodesic on a Lie group equipped with an invariant metric. As second order equations (in time), stochastic geodesics are characterized in terms of stochastic forward-backward differential systems.
    When the group is the diffeomorphisms group this corresponds to a probabilistic description of the Navier-Stokes equations.
Citation: Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115
References:
[1]

M. Arnaudon, X. Chen and A.B. Cruzeiro, Stochastic Euler-Poincaré reduction,, preprint, ().   Google Scholar

[2]

M. Arnaudon and A.B. Cruzeiro, Lagrangian Navier Stokes diffusions on manifolds: variational principle and stability, Bull. Sci. Math. 136 (2012), no. 8, 857-881.  Google Scholar

[3]

V.I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16 (1966), 316-361.  Google Scholar

[4]

J.-M. Bismut, An introductory approach to duality in optimal stochastic control, SIAM Rev, 20 (1978), 62-78.  Google Scholar

[5]

J.-M. Bismut, Mécanique Aléatoire, Lecture Notes in Math. 866, Springer-Verlag (1981).  Google Scholar

[6]

F. Cipriano and A.B. Cruzeiro, Navier-Stokes equation and diffusions on the group of homeomorphisms of the torus, Comm. Math. Phys., 275 (2007), 255-269.  Google Scholar

[7]

A.B. Cruzeiro and E. Shamarova, Navier-Stokes equations and forward-backward SDEs on the group of diffeomorphisms of the torus, Stoch. Proc. and their Applic., 119 (2009), 4034-4060.  Google Scholar

[8]

A.B. Cruzeiro and Zh. Qian, Backward stochastic differential equations associated with the vorticity equations,, preprint, ().   Google Scholar

[9]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), 102-163.  Google Scholar

[10]

A. Estrade and M. Pontier, Backward stochastic differential equations in a Lie group, Séminaire de Probabilités, XXXV, Lecture Notes in Math., 1755, Springer-Verlag (2001), 241-259.  Google Scholar

[11]

W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions, Applications of Mathematics 25, Springer-Verlag, New York (1993).  Google Scholar

[12]

B. Khesin, Groups and topology in the Euler hydrodynamics and KdV, in Hamiltonian dynamical systems and applications, Ed. W.Craig, NATO Science series B, XVI Springer-Verlag (2008), 93-102.  Google Scholar

[13]

J.A. Lázaro-Camí and J.P. Ortega, Stochastic Hamiltonian dynamical systems, SIAM Review, 20 (1978), 65-122.  Google Scholar

[14]

J. Ma and J. Yong, Forward-backward stochastic differential equations and their applications, Springer-Verlag, Lecture Notes in Math. 1702, Springer-Verlag (2007).  Google Scholar

[15]

J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, Texts in Applied Math. (2003).  Google Scholar

[16]

E. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. , 14 (1990), 55-61.  Google Scholar

[17]

J.-C. Zambrini, Variational processes and stochastic versions of mechanics, Journal of Mathematical Physics, 27 (1986), 2307-2330.  Google Scholar

[18]

J.-C. Zambrini, Stochastic Deformation of Classical Mechanics,, in these Proceedings., ().   Google Scholar

show all references

References:
[1]

M. Arnaudon, X. Chen and A.B. Cruzeiro, Stochastic Euler-Poincaré reduction,, preprint, ().   Google Scholar

[2]

M. Arnaudon and A.B. Cruzeiro, Lagrangian Navier Stokes diffusions on manifolds: variational principle and stability, Bull. Sci. Math. 136 (2012), no. 8, 857-881.  Google Scholar

[3]

V.I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, 16 (1966), 316-361.  Google Scholar

[4]

J.-M. Bismut, An introductory approach to duality in optimal stochastic control, SIAM Rev, 20 (1978), 62-78.  Google Scholar

[5]

J.-M. Bismut, Mécanique Aléatoire, Lecture Notes in Math. 866, Springer-Verlag (1981).  Google Scholar

[6]

F. Cipriano and A.B. Cruzeiro, Navier-Stokes equation and diffusions on the group of homeomorphisms of the torus, Comm. Math. Phys., 275 (2007), 255-269.  Google Scholar

[7]

A.B. Cruzeiro and E. Shamarova, Navier-Stokes equations and forward-backward SDEs on the group of diffeomorphisms of the torus, Stoch. Proc. and their Applic., 119 (2009), 4034-4060.  Google Scholar

[8]

A.B. Cruzeiro and Zh. Qian, Backward stochastic differential equations associated with the vorticity equations,, preprint, ().   Google Scholar

[9]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. of Math., 92 (1970), 102-163.  Google Scholar

[10]

A. Estrade and M. Pontier, Backward stochastic differential equations in a Lie group, Séminaire de Probabilités, XXXV, Lecture Notes in Math., 1755, Springer-Verlag (2001), 241-259.  Google Scholar

[11]

W.H. Fleming and H.M. Soner, Controlled Markov processes and viscosity solutions, Applications of Mathematics 25, Springer-Verlag, New York (1993).  Google Scholar

[12]

B. Khesin, Groups and topology in the Euler hydrodynamics and KdV, in Hamiltonian dynamical systems and applications, Ed. W.Craig, NATO Science series B, XVI Springer-Verlag (2008), 93-102.  Google Scholar

[13]

J.A. Lázaro-Camí and J.P. Ortega, Stochastic Hamiltonian dynamical systems, SIAM Review, 20 (1978), 65-122.  Google Scholar

[14]

J. Ma and J. Yong, Forward-backward stochastic differential equations and their applications, Springer-Verlag, Lecture Notes in Math. 1702, Springer-Verlag (2007).  Google Scholar

[15]

J.E. Marsden and T.S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, Texts in Applied Math. (2003).  Google Scholar

[16]

E. Pardoux and S. G. Peng, Adapted solution of a backward stochastic differential equation, Systems Control Lett. , 14 (1990), 55-61.  Google Scholar

[17]

J.-C. Zambrini, Variational processes and stochastic versions of mechanics, Journal of Mathematical Physics, 27 (1986), 2307-2330.  Google Scholar

[18]

J.-C. Zambrini, Stochastic Deformation of Classical Mechanics,, in these Proceedings., ().   Google Scholar

[1]

Yufeng Shi, Tianxiao Wang, Jiongmin Yong. Optimal control problems of forward-backward stochastic Volterra integral equations. Mathematical Control & Related Fields, 2015, 5 (3) : 613-649. doi: 10.3934/mcrf.2015.5.613

[2]

Jie Xiong, Shuaiqi Zhang, Yi Zhuang. A partially observed non-zero sum differential game of forward-backward stochastic differential equations and its application in finance. Mathematical Control & Related Fields, 2019, 9 (2) : 257-276. doi: 10.3934/mcrf.2019013

[3]

Dariusz Borkowski. Forward and backward filtering based on backward stochastic differential equations. Inverse Problems & Imaging, 2016, 10 (2) : 305-325. doi: 10.3934/ipi.2016002

[4]

Yuri Bakhtin. Lyapunov exponents for stochastic differential equations with infinite memory and application to stochastic Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 697-709. doi: 10.3934/dcdsb.2006.6.697

[5]

Ying Liu, Yabing Sun, Weidong Zhao. Explicit multistep stochastic characteristic approximation methods for forward backward stochastic differential equations. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021044

[6]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[7]

Adel Chala, Dahbia Hafayed. On stochastic maximum principle for risk-sensitive of fully coupled forward-backward stochastic control of mean-field type with application. Evolution Equations & Control Theory, 2020, 9 (3) : 817-843. doi: 10.3934/eect.2020035

[8]

Ana Bela Cruzeiro. Navier-Stokes and stochastic Navier-Stokes equations via Lagrange multipliers. Journal of Geometric Mechanics, 2019, 11 (4) : 553-560. doi: 10.3934/jgm.2019027

[9]

Jasmina Djordjević, Svetlana Janković. Reflected backward stochastic differential equations with perturbations. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 1833-1848. doi: 10.3934/dcds.2018075

[10]

Jan A. Van Casteren. On backward stochastic differential equations in infinite dimensions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 803-824. doi: 10.3934/dcdss.2013.6.803

[11]

Joscha Diehl, Jianfeng Zhang. Backward stochastic differential equations with Young drift. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 5-. doi: 10.1186/s41546-017-0016-5

[12]

Ying Hu, Shanjian Tang. Switching game of backward stochastic differential equations and associated system of obliquely reflected backward stochastic differential equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5447-5465. doi: 10.3934/dcds.2015.35.5447

[13]

Anna Amirdjanova, Jie Xiong. Large deviation principle for a stochastic navier-Stokes equation in its vorticity form for a two-dimensional incompressible flow. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 651-666. doi: 10.3934/dcdsb.2006.6.651

[14]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5421-5448. doi: 10.3934/dcdsb.2020352

[15]

Hakima Bessaih, Benedetta Ferrario. Statistical properties of stochastic 2D Navier-Stokes equations from linear models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2927-2947. doi: 10.3934/dcdsb.2016080

[16]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[17]

Kumarasamy Sakthivel, Sivaguru S. Sritharan. Martingale solutions for stochastic Navier-Stokes equations driven by Lévy noise. Evolution Equations & Control Theory, 2012, 1 (2) : 355-392. doi: 10.3934/eect.2012.1.355

[18]

Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323

[19]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[20]

Qi Zhang, Huaizhong Zhao. Backward doubly stochastic differential equations with polynomial growth coefficients. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5285-5315. doi: 10.3934/dcds.2015.35.5285

 Impact Factor: 

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]