2013, 2013(special): 159-169. doi: 10.3934/proc.2013.2013.159

On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space

1. 

Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via A. Valerio 12/1, 34127 Trieste, Italy, Italy

Received  September 2012 Revised  March 2013 Published  November 2013

We develop a lower and upper solution method for the Dirichlet problem associated with the prescribed mean curvature equation in Minkowski space \begin{equation*} \begin{cases} -{\rm div}\Big( \nabla u /\sqrt{1 - |\nabla u|^2}\Big)= f(x,u) & \hbox{ in } \Omega, \\ u=0& \hbox{ on } \partial \Omega. \end{cases} \end{equation*} Here $\Omega$ is a bounded regular domain in $\mathbb {R}^N$ and the function $f$ satisfies the Carathéodory conditions. The obtained results display various peculiarities due to the special features of the involved differential operator.
Citation: Chiara Corsato, Franco Obersnel, Pierpaolo Omari, Sabrina Rivetti. On the lower and upper solution method for the prescribed mean curvature equation in Minkowski space. Conference Publications, 2013, 2013 (special) : 159-169. doi: 10.3934/proc.2013.2013.159
References:
[1]

R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature,, Comm. Math. Phys. \textbf{87} (1982/83), 87 (): 131.   Google Scholar

[2]

C. Bereanu, P. Jebelean, and P. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space,, J. Funct. Anal. \textbf{264} (2013), 264 (2013), 270.   Google Scholar

[3]

C. Bereanu, P. Jebelean, and P. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space,, J. Funct. Anal. \textbf{265} (2013), 265 (2013), 644.   Google Scholar

[4]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum,, Differential Integral Equations \textbf{23} (2010), 23 (2010), 801.   Google Scholar

[5]

I. Coelho, C. Corsato, F. Obersnel, and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation,, Adv. Nonlinear Stud. \textbf{12} (2012), 12 (2012), 621.   Google Scholar

[6]

I. Coelho, C. Corsato, and S. Rivetti, Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball,, Topol. Methods Nonlinear Anal. (2013), (2013).   Google Scholar

[7]

C. Corsato, F. Obersnel, P. Omari, and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space,, J. Math. Anal. Appl. \textbf{405} (2013) 227-239., 405 (2013), 227.   Google Scholar

[8]

C. Gerhardt, $H$-surfaces in Lorentzian manifolds,, Comm. Math. Phys. \textbf{89} (1983), 89 (1983), 523.   Google Scholar

[9]

J. Mawhin, Radial solutions of Neumann problem for periodic perturbations of the mean extrinsic curvature operator,, Milan J. Math. \textbf{79} (2011), 79 (2011), 95.   Google Scholar

[10]

P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential,, Comm. Partial Differential Equations {\bf 21} (1996), 21 (1996), 721.   Google Scholar

show all references

References:
[1]

R. Bartnik and L. Simon, Spacelike hypersurfaces with prescribed boundary values and mean curvature,, Comm. Math. Phys. \textbf{87} (1982/83), 87 (): 131.   Google Scholar

[2]

C. Bereanu, P. Jebelean, and P. Torres, Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space,, J. Funct. Anal. \textbf{264} (2013), 264 (2013), 270.   Google Scholar

[3]

C. Bereanu, P. Jebelean, and P. Torres, Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space,, J. Funct. Anal. \textbf{265} (2013), 265 (2013), 644.   Google Scholar

[4]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum,, Differential Integral Equations \textbf{23} (2010), 23 (2010), 801.   Google Scholar

[5]

I. Coelho, C. Corsato, F. Obersnel, and P. Omari, Positive solutions of the Dirichlet problem for the one-dimensional Minkowski-curvature equation,, Adv. Nonlinear Stud. \textbf{12} (2012), 12 (2012), 621.   Google Scholar

[6]

I. Coelho, C. Corsato, and S. Rivetti, Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball,, Topol. Methods Nonlinear Anal. (2013), (2013).   Google Scholar

[7]

C. Corsato, F. Obersnel, P. Omari, and S. Rivetti, Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space,, J. Math. Anal. Appl. \textbf{405} (2013) 227-239., 405 (2013), 227.   Google Scholar

[8]

C. Gerhardt, $H$-surfaces in Lorentzian manifolds,, Comm. Math. Phys. \textbf{89} (1983), 89 (1983), 523.   Google Scholar

[9]

J. Mawhin, Radial solutions of Neumann problem for periodic perturbations of the mean extrinsic curvature operator,, Milan J. Math. \textbf{79} (2011), 79 (2011), 95.   Google Scholar

[10]

P. Omari and F. Zanolin, Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential,, Comm. Partial Differential Equations {\bf 21} (1996), 21 (1996), 721.   Google Scholar

[1]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[2]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[3]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[6]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[7]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[8]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[9]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[10]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[11]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[12]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[13]

Gabrielle Nornberg, Delia Schiera, Boyan Sirakov. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3857-3881. doi: 10.3934/dcds.2020128

[14]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[15]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[16]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[17]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[18]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[19]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[20]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

 Impact Factor: 

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (0)

[Back to Top]