2013, 2013(special): 183-191. doi: 10.3934/proc.2013.2013.183

Small data solutions for semilinear wave equations with effective damping

1. 

Department of Mathematics, University of Bari, Bari, 70124, Italy

Received  September 2012 Published  November 2013

We consider the Cauchy problem for the semi-linear damped wave equation
    $ u_{tt} - \Delta u + b(t)u_t = f(t,u),\qquad u(0,x) = u_0(x),\qquad u_t(0,x) = u_1(x). $
We prove the global existence of small data solution in low space dimension, and we derive $(L^m\cap L^2)-L^2$ decay estimates, for $m\in[1,2)$. We assume that the time-dependent damping term $b(t)>0$ is effective, that is, the equation inherits some properties of the parabolic equation $b(t)u_t - \Delta u = f(t,u)$.
Citation: Marcello D'Abbicco. Small data solutions for semilinear wave equations with effective damping. Conference Publications, 2013, 2013 (special) : 183-191. doi: 10.3934/proc.2013.2013.183
References:
[1]

M. D'Abbicco, M.R. Ebert, Hyperbolic-like estimates for higher order equations,, J. Math. Anal. Appl. 395 (2012), 395 (2012), 747.   Google Scholar

[2]

M. D'Abbicco, M.R. Ebert, A class of dissipative wave equations with time-dependent speed and damping, J. Math. Anal. Appl. 399 (2013), 399 (2013), 315.   Google Scholar

[3]

M. D'Abbicco, S. Lucente, A modified test function method for damped wave equations, Adv. Nonlinear Studies 13 (2013), 13 (2013), 867.   Google Scholar

[4]

M. D'Abbicco, S. Lucente, M. Reissig, Semilinear wave equations with effective damping,, Chinese Ann. Math. 34B (2013), 34B (2013), 345.   Google Scholar

[5]

H. Fujita, On the blowing up of solutions of the Cauchy Problem for $u_t=\Delta u+u^{1+\alpha}$,, J. Fac.Sci. Univ. Tokyo 13 (1966), 13 (1966), 109.   Google Scholar

[6]

R. Ikehata, Y. Mayaoka, T. Nakatake, Decay estimates of solutions for dissipative wave equations in $\mathbbR^N$ with lower power nonlinearities,, J. Math. Soc. Japan, 56 (2004), 365.   Google Scholar

[7]

R. Ikehata, M. Ohta, Critical exponents for semilinear dissipative wave equations in $\mathbbR^N$,, J. Math. Anal. Appl., 269 (2002), 87.   Google Scholar

[8]

R. Ikehata, K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $R^N$ with noncompactly supported initial data,, Nonlinear Analysis 61 (2005), 61 (2005), 1189.   Google Scholar

[9]

R. Ikehata, G. Todorova, B. Yordanov, Critical exponent for semilinear wave equations with Space-Dependent Potential,, Funkcial. Ekvac. 52 (2009), 52 (2009), 411.   Google Scholar

[10]

J. Lin, K. Nishihara, J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping,, Discrete and Continuous Dynamical Systems, 32 (2012), 4307.   Google Scholar

[11]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. RIMS. 12 (1976), 12 (1976), 169.   Google Scholar

[12]

G. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, J. of Differential Equations 174 (2001), 174 (2001), 464.   Google Scholar

[13]

J. Wirth, Wave equations with time-dependent dissipation II. Effective dissipation,, J. Differential Equations 232 (2007), 232 (2007), 74.   Google Scholar

[14]

Qi S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case,, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 333 (2001), 109.   Google Scholar

show all references

References:
[1]

M. D'Abbicco, M.R. Ebert, Hyperbolic-like estimates for higher order equations,, J. Math. Anal. Appl. 395 (2012), 395 (2012), 747.   Google Scholar

[2]

M. D'Abbicco, M.R. Ebert, A class of dissipative wave equations with time-dependent speed and damping, J. Math. Anal. Appl. 399 (2013), 399 (2013), 315.   Google Scholar

[3]

M. D'Abbicco, S. Lucente, A modified test function method for damped wave equations, Adv. Nonlinear Studies 13 (2013), 13 (2013), 867.   Google Scholar

[4]

M. D'Abbicco, S. Lucente, M. Reissig, Semilinear wave equations with effective damping,, Chinese Ann. Math. 34B (2013), 34B (2013), 345.   Google Scholar

[5]

H. Fujita, On the blowing up of solutions of the Cauchy Problem for $u_t=\Delta u+u^{1+\alpha}$,, J. Fac.Sci. Univ. Tokyo 13 (1966), 13 (1966), 109.   Google Scholar

[6]

R. Ikehata, Y. Mayaoka, T. Nakatake, Decay estimates of solutions for dissipative wave equations in $\mathbbR^N$ with lower power nonlinearities,, J. Math. Soc. Japan, 56 (2004), 365.   Google Scholar

[7]

R. Ikehata, M. Ohta, Critical exponents for semilinear dissipative wave equations in $\mathbbR^N$,, J. Math. Anal. Appl., 269 (2002), 87.   Google Scholar

[8]

R. Ikehata, K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $R^N$ with noncompactly supported initial data,, Nonlinear Analysis 61 (2005), 61 (2005), 1189.   Google Scholar

[9]

R. Ikehata, G. Todorova, B. Yordanov, Critical exponent for semilinear wave equations with Space-Dependent Potential,, Funkcial. Ekvac. 52 (2009), 52 (2009), 411.   Google Scholar

[10]

J. Lin, K. Nishihara, J. Zhai, Critical exponent for the semilinear wave equation with time-dependent damping,, Discrete and Continuous Dynamical Systems, 32 (2012), 4307.   Google Scholar

[11]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. RIMS. 12 (1976), 12 (1976), 169.   Google Scholar

[12]

G. Todorova, B. Yordanov, Critical exponent for a nonlinear wave equation with damping,, J. of Differential Equations 174 (2001), 174 (2001), 464.   Google Scholar

[13]

J. Wirth, Wave equations with time-dependent dissipation II. Effective dissipation,, J. Differential Equations 232 (2007), 232 (2007), 74.   Google Scholar

[14]

Qi S. Zhang, A blow-up result for a nonlinear wave equation with damping: The critical case,, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 333 (2001), 109.   Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[3]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[4]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[6]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[12]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[13]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[14]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[15]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[17]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[18]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

 Impact Factor: 

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]