2013, 2013(special): 217-226. doi: 10.3934/proc.2013.2013.217

The role of lower and upper solutions in the generalization of Lidstone problems

1. 

Centro de Investigação em Matemática e Aplicações da U.E. (CIMA-CE), Rua Romão Ramalho 59, 7000-671 Évora

2. 

School of Sciences and Technology. Department of Mathematics, University of Évora, Research Center in Mathematics and Applications of the University of Évora, (CIMA-UE), Rua Romão Ramalho, 59, 7000-671 Évora, Portugal

Received  September 2012 Revised  February 2013 Published  November 2013

In this the authors consider the nonlinear fully equation
          \begin{equation*} u^{(iv)} (x) + f( x,u(x) ,u^{\prime}(x) ,u^{\prime \prime}(x) ,u^{\prime \prime \prime}(x) ) = 0 \end{equation*} for $x\in [ 0,1] ,$ where $f:[ 0,1] \times \mathbb{R} ^{4} \to \mathbb{R}$ is a continuous functions, coupled with the Lidstone boundary conditions, \begin{equation*} u(0) = u(1) = u^{\prime \prime}(0) = u^{\prime \prime }(1) = 0. \end{equation*}
    They discuss how different definitions of lower and upper solutions can generalize existence and location results for boundary value problems with Lidstone boundary data. In addition, they replace the usual bilateral Nagumo condition by a one-sided condition, allowing the nonlinearity to be unbounded$.$ An example will show that this unilateral condition generalizes the usual one and stress the potentialities of the new definitions.
Citation: João Fialho, Feliz Minhós. The role of lower and upper solutions in the generalization of Lidstone problems. Conference Publications, 2013, 2013 (special) : 217-226. doi: 10.3934/proc.2013.2013.217
References:
[1]

P. Drábek, G. Holubová, A. Matas, P. Nečessal, Nonlinear models of suspension bridges: discussion of results,, Applications of Mathematics, 48 (2003), 497.   Google Scholar

[2]

J. Fialho, F. Minhós, Existence and location results for hinged beams with unbounded nonlinearities,, Nonlinear Anal., 71 (2009), 1519.   Google Scholar

[3]

M.R. Grossinho, F.M. Minhós, A.I. Santos, Solvability of some third-order boundary value problems with asymmetric unbounded linearities,, Nonlinear Analysis, 62 (2005), 1235.   Google Scholar

[4]

M. R. Grossinho, F. Minhós, A. I. Santos, A note on a class of problems for a higher order fully nonlinear equation under one sided Nagumo type condition,, Nonlinear Anal., 70 (2009), 4027.   Google Scholar

[5]

M.R. Grossinho, F. Minhós, Upper and lower solutions for some higher order boundary value problems,, Nonlinear Studies, 12 (2005), 165.   Google Scholar

[6]

C. P. Gupta, Existence and uniqueness theorems for the bending of an elastic beam equation,, Appl. Anal., 26 (1988), 289.   Google Scholar

[7]

C. P. Gupta, Existence and uniqueness theorems for a fourth order boundary value problem of Sturm-Liouville type,, Differential and Integral Equations, 4 (1991), 397.   Google Scholar

[8]

A.C. Lazer, P.J. Mckenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis,, SIAM Review 32 (1990) 537-578., 32 (1990), 537.   Google Scholar

[9]

T.F. Ma, J. da Silva, Iterative solutions for a beam equation with nonlinear boundary conditions of third order,, Appl. Math. Comp., 159 (2004), 11.   Google Scholar

[10]

F. Minhós, T. Gyulov, A. I. Santos, Existence and location result for a fourth order boundary value problem,, Discrete Contin. Dyn. Syst., (2005), 662.   Google Scholar

[11]

F. Minhós, T. Gyulov, A. I. Santos, Lower and upper solutions for a fully nonlinear beam equations,, Nonlinear Anal., (2009), 281.   Google Scholar

[12]

M. Šenkyřík, Fourth order boundary value problems and nonlinear beams,, Appl. Analysis, 59 (1995), 15.   Google Scholar

show all references

References:
[1]

P. Drábek, G. Holubová, A. Matas, P. Nečessal, Nonlinear models of suspension bridges: discussion of results,, Applications of Mathematics, 48 (2003), 497.   Google Scholar

[2]

J. Fialho, F. Minhós, Existence and location results for hinged beams with unbounded nonlinearities,, Nonlinear Anal., 71 (2009), 1519.   Google Scholar

[3]

M.R. Grossinho, F.M. Minhós, A.I. Santos, Solvability of some third-order boundary value problems with asymmetric unbounded linearities,, Nonlinear Analysis, 62 (2005), 1235.   Google Scholar

[4]

M. R. Grossinho, F. Minhós, A. I. Santos, A note on a class of problems for a higher order fully nonlinear equation under one sided Nagumo type condition,, Nonlinear Anal., 70 (2009), 4027.   Google Scholar

[5]

M.R. Grossinho, F. Minhós, Upper and lower solutions for some higher order boundary value problems,, Nonlinear Studies, 12 (2005), 165.   Google Scholar

[6]

C. P. Gupta, Existence and uniqueness theorems for the bending of an elastic beam equation,, Appl. Anal., 26 (1988), 289.   Google Scholar

[7]

C. P. Gupta, Existence and uniqueness theorems for a fourth order boundary value problem of Sturm-Liouville type,, Differential and Integral Equations, 4 (1991), 397.   Google Scholar

[8]

A.C. Lazer, P.J. Mckenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis,, SIAM Review 32 (1990) 537-578., 32 (1990), 537.   Google Scholar

[9]

T.F. Ma, J. da Silva, Iterative solutions for a beam equation with nonlinear boundary conditions of third order,, Appl. Math. Comp., 159 (2004), 11.   Google Scholar

[10]

F. Minhós, T. Gyulov, A. I. Santos, Existence and location result for a fourth order boundary value problem,, Discrete Contin. Dyn. Syst., (2005), 662.   Google Scholar

[11]

F. Minhós, T. Gyulov, A. I. Santos, Lower and upper solutions for a fully nonlinear beam equations,, Nonlinear Anal., (2009), 281.   Google Scholar

[12]

M. Šenkyřík, Fourth order boundary value problems and nonlinear beams,, Appl. Analysis, 59 (1995), 15.   Google Scholar

[1]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[2]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[3]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[4]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[5]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[6]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[7]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[8]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[9]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[10]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[11]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[12]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[13]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[15]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[16]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[17]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[18]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[19]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[20]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

 Impact Factor: 

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]