2013, 2013(special): 227-236. doi: 10.3934/proc.2013.2013.227

A reinjected cuspidal horseshoe

1. 

Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Road, 33431 Boca Raton, United States, United States

Received  September 2012 Revised  July 2013 Published  November 2013

Horseshoes play a central role in dynamical systems and are observed in many chaotic systems. However most points in a neighborhood of the horseshoe escape after finite iterations. In this work we construct a model that possesses an attracting set that contains a cuspidal horseshoe with positive entropy. This model is obtained by reinjecting the points that escape the horseshoe and can be realized in a 3-dimensional vector field.
Citation: Marcus Fontaine, William D. Kalies, Vincent Naudot. A reinjected cuspidal horseshoe. Conference Publications, 2013, 2013 (special) : 227-236. doi: 10.3934/proc.2013.2013.227
References:
[1]

SIAM J. Appl. Dyn. Syst. 8, (2009), 757-789.  Google Scholar

[2]

Ann. Fac. Sci. Toulouse. Math. 6, (8), (2001), no. 4, 595-617.  Google Scholar

[3]

Journ. Dynamics and Diff. Eq., 2, (1990), 177-244.  Google Scholar

[4]

SIAM J. Appl. Dyn. Syst. 7, (2008), 1477-1506.  Google Scholar

[5]

J. Dyn. Diff.Eq. 5, (1993), 417-467.  Google Scholar

[6]

EQUADIFF 2003, 157-162.  Google Scholar

[7]

Chaos, 7, (1997), 221-228.  Google Scholar

[8]

Lect. Notes Math. 583 Springer 1977.  Google Scholar

[9]

Memoirs A.M.S. 578, (1996).  Google Scholar

[10]

Ergod. Th. & Dynam. Sys. 14 (1994), 667-693.  Google Scholar

[11]

Found. Comput. Math. 5, (2005), 409-449.  Google Scholar

[12]

Journ. Dynamics and Diff. Eq. 5, (1993), 305-357.  Google Scholar

[13]

Annals of Math. Studies. Princeton University Press, 1973.  Google Scholar

[14]

Ergod. Th. & Dynam. Syst. 16, (1996), 1071-1086.  Google Scholar

[15]

Thèse de l'Université de Bourgogne, Dijon (1996). Google Scholar

[16]

Dyn. Syst. 23, (2008), no. 4, 467-489.  Google Scholar

[17]

Cambridge University Press 1993.  Google Scholar

[18]

Springer Verlag 1982.  Google Scholar

[19]

Ergod. Th. & Dynam. Syst. 10, (1990), 793-821.  Google Scholar

[20]

Bull. Am. Math. Soc. 73, (1967), 747-817.  Google Scholar

show all references

References:
[1]

SIAM J. Appl. Dyn. Syst. 8, (2009), 757-789.  Google Scholar

[2]

Ann. Fac. Sci. Toulouse. Math. 6, (8), (2001), no. 4, 595-617.  Google Scholar

[3]

Journ. Dynamics and Diff. Eq., 2, (1990), 177-244.  Google Scholar

[4]

SIAM J. Appl. Dyn. Syst. 7, (2008), 1477-1506.  Google Scholar

[5]

J. Dyn. Diff.Eq. 5, (1993), 417-467.  Google Scholar

[6]

EQUADIFF 2003, 157-162.  Google Scholar

[7]

Chaos, 7, (1997), 221-228.  Google Scholar

[8]

Lect. Notes Math. 583 Springer 1977.  Google Scholar

[9]

Memoirs A.M.S. 578, (1996).  Google Scholar

[10]

Ergod. Th. & Dynam. Sys. 14 (1994), 667-693.  Google Scholar

[11]

Found. Comput. Math. 5, (2005), 409-449.  Google Scholar

[12]

Journ. Dynamics and Diff. Eq. 5, (1993), 305-357.  Google Scholar

[13]

Annals of Math. Studies. Princeton University Press, 1973.  Google Scholar

[14]

Ergod. Th. & Dynam. Syst. 16, (1996), 1071-1086.  Google Scholar

[15]

Thèse de l'Université de Bourgogne, Dijon (1996). Google Scholar

[16]

Dyn. Syst. 23, (2008), no. 4, 467-489.  Google Scholar

[17]

Cambridge University Press 1993.  Google Scholar

[18]

Springer Verlag 1982.  Google Scholar

[19]

Ergod. Th. & Dynam. Syst. 10, (1990), 793-821.  Google Scholar

[20]

Bull. Am. Math. Soc. 73, (1967), 747-817.  Google Scholar

[1]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[2]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[3]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[4]

Eric Babson and Dmitry N. Kozlov. Topological obstructions to graph colorings. Electronic Research Announcements, 2003, 9: 61-68.

[5]

Antonio Rieser. A topological approach to spectral clustering. Foundations of Data Science, 2021, 3 (1) : 49-66. doi: 10.3934/fods.2021005

[6]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3797-3816. doi: 10.3934/dcds.2021017

[7]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2993-3020. doi: 10.3934/dcds.2020394

[8]

Azmeer Nordin, Mohd Salmi Md Noorani. Counting finite orbits for the flip systems of shifts of finite type. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021046

[9]

Yingxu Tian, Junyi Guo, Zhongyang Sun. Optimal mean-variance reinsurance in a financial market with stochastic rate of return. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1887-1912. doi: 10.3934/jimo.2020051

[10]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[11]

Roberto Civino, Riccardo Longo. Formal security proof for a scheme on a topological network. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021009

[12]

Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233

[13]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[14]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[15]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[16]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[17]

Clara Cufí-Cabré, Ernest Fontich. Differentiable invariant manifolds of nilpotent parabolic points. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021053

[18]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2891-2905. doi: 10.3934/dcds.2020390

[19]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[20]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2677-2698. doi: 10.3934/dcds.2020381

 Impact Factor: 

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

[Back to Top]