\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A reinjected cuspidal horseshoe

Abstract Related Papers Cited by
  • Horseshoes play a central role in dynamical systems and are observed in many chaotic systems. However most points in a neighborhood of the horseshoe escape after finite iterations. In this work we construct a model that possesses an attracting set that contains a cuspidal horseshoe with positive entropy. This model is obtained by reinjecting the points that escape the horseshoe and can be realized in a 3-dimensional vector field.
    Mathematics Subject Classification: Primary: 37D45, 37C29; Secondary: 37B10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Z. Arai, W.D. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems, SIAM J. Appl. Dyn. Syst. 8, (2009), 757-789.

    [2]

    P. Bonckaert, V. Naudot, Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension three, Ann. Fac. Sci. Toulouse. Math. 6, (8), (2001), no. 4, 595-617.

    [3]

    S.N. Chow, B. Deng, B. Fiedler, Homoclinic bifurcation at resonant eigenvalues, Journ. Dynamics and Diff. Eq., 2, (1990), 177-244.

    [4]

    S. Day, R. Frongillo, R. Treviño, Algorithms for rigorous entropy bounds and symbolic dynamics, SIAM J. Appl. Dyn. Syst. 7, (2008), 1477-1506.

    [5]

    B. Deng, Homoclinic twisting bifurcation and cusp horseshoe maps, J. Dyn. Diff.Eq. 5, (1993), 417-467.

    [6]

    S. Day, O. Junge, K. Mischaikow, Towards automated chaos verification, EQUADIFF 2003, 157-162.

    [7]

    M. Dellnitz, A. Hohmann, O. Junge, M. Rumpf, Exploring invariant sets and invariant measures, Chaos, 7, (1997), 221-228.

    [8]

    M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds, Lect. Notes Math. 583 Springer 1977.

    [9]

    A.J. Homburg, Global Aspects of Homoclinic Bifurcations of Vector Fields, Memoirs A.M.S. 578, (1996).

    [10]

    A.J. Homburg, H. Kokubu, M. Krupa, The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit, Ergod. Th. & Dynam. Sys. 14 (1994), 667-693.

    [11]

    W.D. Kalies, K. Mischaikow, R.C.A.M. VanderVorst, An algorithmic approach to chain recurrence, Found. Comput. Math. 5, (2005), 409-449.

    [12]

    M. Kisaka, H. Kokubu, K. Oka, Bifurcations to N-homoclinic orbits and N-periodic orbits in vector fields, Journ. Dynamics and Diff. Eq. 5, (1993), 305-357.

    [13]

    J. Moser., Stable and Random Motions in Dynamical Systems, Annals of Math. Studies. Princeton University Press, 1973.

    [14]

    V. Naudot, Strange attractor in the unfolding of an inclination-flip homoclinic orbit, Ergod. Th. & Dynam. Syst. 16, (1996), 1071-1086.

    [15]

    V. Naudot, Bifurcations homoclines des champs de vecteurs en dimension trois, Thèse de l'Université de Bourgogne, Dijon (1996).

    [16]

    V. Naudot, J. Yang, Linearization of families of germs of hyperbolic vector fields, Dyn. Syst. 23, (2008), no. 4, 467-489.

    [17]

    J. Palis, F. Takens., "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and infinitely many Attractors'', Cambridge University Press 1993.

    [18]

    J. Palis, W. de Melo, Geometric Theory of Dynamical Systems. An introdcution, Springer Verlag 1982.

    [19]

    M.R. Rychlik, Lorenz attractors through Shil'nikov-type bifurcation. Part I, Ergod. Th. & Dynam. Syst. 10, (1990), 793-821.

    [20]

    S. Smale, Differential dynamical systems, Bull. Am. Math. Soc. 73, (1967), 747-817.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(49) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return