[1]
|
Z. Arai, W.D. Kalies, H. Kokubu, K. Mischaikow, H. Oka, and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems, SIAM J. Appl. Dyn. Syst. 8, (2009), 757-789.
|
[2]
|
P. Bonckaert, V. Naudot, Asymptotic properties of the Dulac map near a hyperbolic saddle in dimension three, Ann. Fac. Sci. Toulouse. Math. 6, (8), (2001), no. 4, 595-617.
|
[3]
|
S.N. Chow, B. Deng, B. Fiedler, Homoclinic bifurcation at resonant eigenvalues, Journ. Dynamics and Diff. Eq., 2, (1990), 177-244.
|
[4]
|
S. Day, R. Frongillo, R. Treviño, Algorithms for rigorous entropy bounds and symbolic dynamics, SIAM J. Appl. Dyn. Syst. 7, (2008), 1477-1506.
|
[5]
|
B. Deng, Homoclinic twisting bifurcation and cusp horseshoe maps, J. Dyn. Diff.Eq. 5, (1993), 417-467.
|
[6]
|
S. Day, O. Junge, K. Mischaikow, Towards automated chaos verification, EQUADIFF 2003, 157-162.
|
[7]
|
M. Dellnitz, A. Hohmann, O. Junge, M. Rumpf, Exploring invariant sets and invariant measures, Chaos, 7, (1997), 221-228.
|
[8]
|
M. Hirsch, C. Pugh, M. Shub, Invariant Manifolds, Lect. Notes Math. 583 Springer 1977.
|
[9]
|
A.J. Homburg, Global Aspects of Homoclinic Bifurcations of Vector Fields, Memoirs A.M.S. 578, (1996).
|
[10]
|
A.J. Homburg, H. Kokubu, M. Krupa, The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic orbit, Ergod. Th. & Dynam. Sys. 14 (1994), 667-693.
|
[11]
|
W.D. Kalies, K. Mischaikow, R.C.A.M. VanderVorst, An algorithmic approach to chain recurrence, Found. Comput. Math. 5, (2005), 409-449.
|
[12]
|
M. Kisaka, H. Kokubu, K. Oka, Bifurcations to N-homoclinic orbits and N-periodic orbits in vector fields, Journ. Dynamics and Diff. Eq. 5, (1993), 305-357.
|
[13]
|
J. Moser., Stable and Random Motions in Dynamical Systems, Annals of Math. Studies. Princeton University Press, 1973.
|
[14]
|
V. Naudot, Strange attractor in the unfolding of an inclination-flip homoclinic orbit, Ergod. Th. & Dynam. Syst. 16, (1996), 1071-1086.
|
[15]
|
V. Naudot, Bifurcations homoclines des champs de vecteurs en dimension trois, Thèse de l'Université de Bourgogne, Dijon (1996).
|
[16]
|
V. Naudot, J. Yang, Linearization of families of germs of hyperbolic vector fields, Dyn. Syst. 23, (2008), no. 4, 467-489.
|
[17]
|
J. Palis, F. Takens., "Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Fractal Dimensions and infinitely many Attractors'', Cambridge University Press 1993.
|
[18]
|
J. Palis, W. de Melo, Geometric Theory of Dynamical Systems. An introdcution, Springer Verlag 1982.
|
[19]
|
M.R. Rychlik, Lorenz attractors through Shil'nikov-type bifurcation. Part I, Ergod. Th. & Dynam. Syst. 10, (1990), 793-821.
|
[20]
|
S. Smale, Differential dynamical systems, Bull. Am. Math. Soc. 73, (1967), 747-817.
|