[1]
|
V. Barbu and Th. Precupanu, Convexity and optimization in Banach space, D. Reidel Publishing Company, Dordrecht, 1986.
|
[2]
|
H. Brézis, Problèmes unilatéraux, J. Math. Pures Appl. (9), 51(1972), 1-168.
|
[3]
|
H. Brézis, Un problème d'évolution avec contraintes unilatérales dépendant du temps, C. R. Acad. Sci. Paris, 274(1972), 310-313.
|
[4]
|
H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, 1973.
|
[5]
|
E. Ginder, Construction of solutions to heat-type problems with time-dependent volume constraints, Adv. Math. Sci. Appl., 20(2010), 467-482.
|
[6]
|
E. Ginder and K. Švadlenka, The discrete Morse flow for volume-controlled membrane motions, Adv. Math. Sci. Appl., 22(2012), 1-19.
|
[7]
|
A. Ito, N. Kenmochi and M. Niezgódka, Phase separation model of Penrose-Fife type with Signorini boundary condition, Adv. Math. Sci. Appl., 17(2007), 337-356.
|
[8]
|
K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications, Advances in Design and Control, Society for Industrial and Applied Mathematics, Philadelphia, 2008.
|
[9]
|
D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Academic Press, New York, (1980).
|
[10]
|
N. Kenmochi, Monotonicity and compactness methods for nonlinear variational inequalities, M. Chipot (Ed.), Handbook of differential equations: Stationary partial differential equations, Vol.4, North-Holland, Amsterdam (2007), 203-298.
|
[11]
|
N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, The Bull. Fac. Education, Chiba Univ., 30(1981), 1-86.
|
[12]
|
M. Kubo, The Cahn-Hilliard equation with time-dependent constraint, Nonlinear Anal., 75(2012), 5672-5685.
|
[13]
|
M. D. P. Monteiro Marques, Differential inclusions in nonsmooth mechanical problems, shocks and dry friction, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Boston, 1993.
|
[14]
|
K. Švadlenka and S. Omata, Mathematical modelling of surface vibration with volume constraint and its analysis, Nonlinear Anal., 69(2008), 3202-3212.
|
[15]
|
Y. Yamada, On evolution equations generated by subdifferential operators, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23(1976), 491-515.
|
[16]
|
N. Yamazaki, A. Ito and N. Kenmochi, Global attractors of time-dependent double obstacle problems, pp. 288-301 in Functional analysis and global analysis, Springer, Singapore, 1997.
|