2013, 2013(special): 247-257. doi: 10.3934/proc.2013.2013.247

Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator

1. 

Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL, 32901-6975, United States

2. 

Department of Mathematics, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom

3. 

1133 N Desert Deer Pass, Green Valley, Arizona 85614-5530, United States

Received  September 2012 Revised  April 2013 Published  November 2013

In this paper we give a first order system of difference equations which provides a useful companion system in the study of Jacobi matrix operators and make use of it to obtain a characterization of the spectral density function for a simple case involving absolutely continuous spectrum on the stability intervals.
Citation: Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247
References:
[1]

M. Appell, Sur la transformation des équations différentielles linéaires,, Comptes rendus hebdomadaires des seánces de l'Académie des sciences 91 (4) (1880), 91 (1880), 211.   Google Scholar

[2]

F.V. Atkinson, "Discrete and Continuous Boundary Problems,", Academic Press, (1964).   Google Scholar

[3]

M.S.P. Eastham, "The Spectral Theory of periodic differential equations,", Scottish Academic Press, (1973).   Google Scholar

[4]

C.T. Fulton, D.B. Pearson, and S. Pruess, New characterizations of spectral density functions for singular Sturm-Liouville problems,, J. Comput. Appl. Math (2008) 212 (2), 212 (2008), 194.   Google Scholar

[5]

C.T. Fulton, D.B. Pearson, and S. Pruess, Efficient calculation of spectral density functions for specific classes of singular Sturm-Liouville problems,, J. Comput. Appl. Math (2008) 212 (2), 212 (2008), 150.   Google Scholar

[6]

C.T. Fulton, D.B. Pearson, and S. Pruess, Algorithms for Estimating Spectral Density Functions for Periodic Potentials, preprint,, , ().   Google Scholar

[7]

C.T. Fulton, D.B. Pearson, and S. Pruess, Titchmarsh-Weyl theory for tridiagonal Jacobi matrices and computation of their spectral functions,, in, (2009), 165.   Google Scholar

[8]

B. Simon, "Szegö's Theorem and Its Descendants,", Princeton University Press, (2011).   Google Scholar

[9]

G. Stolz and R. Weikard, "Notes of Seminar on Jacobi Matrices,", Dept of Mathematics, (2004).   Google Scholar

[10]

G. Teschl, Jacobi Operators and Completely, Integrable Nonlinear Lattices,, Mathematical Surveys and Monographs, (2000).   Google Scholar

show all references

References:
[1]

M. Appell, Sur la transformation des équations différentielles linéaires,, Comptes rendus hebdomadaires des seánces de l'Académie des sciences 91 (4) (1880), 91 (1880), 211.   Google Scholar

[2]

F.V. Atkinson, "Discrete and Continuous Boundary Problems,", Academic Press, (1964).   Google Scholar

[3]

M.S.P. Eastham, "The Spectral Theory of periodic differential equations,", Scottish Academic Press, (1973).   Google Scholar

[4]

C.T. Fulton, D.B. Pearson, and S. Pruess, New characterizations of spectral density functions for singular Sturm-Liouville problems,, J. Comput. Appl. Math (2008) 212 (2), 212 (2008), 194.   Google Scholar

[5]

C.T. Fulton, D.B. Pearson, and S. Pruess, Efficient calculation of spectral density functions for specific classes of singular Sturm-Liouville problems,, J. Comput. Appl. Math (2008) 212 (2), 212 (2008), 150.   Google Scholar

[6]

C.T. Fulton, D.B. Pearson, and S. Pruess, Algorithms for Estimating Spectral Density Functions for Periodic Potentials, preprint,, , ().   Google Scholar

[7]

C.T. Fulton, D.B. Pearson, and S. Pruess, Titchmarsh-Weyl theory for tridiagonal Jacobi matrices and computation of their spectral functions,, in, (2009), 165.   Google Scholar

[8]

B. Simon, "Szegö's Theorem and Its Descendants,", Princeton University Press, (2011).   Google Scholar

[9]

G. Stolz and R. Weikard, "Notes of Seminar on Jacobi Matrices,", Dept of Mathematics, (2004).   Google Scholar

[10]

G. Teschl, Jacobi Operators and Completely, Integrable Nonlinear Lattices,, Mathematical Surveys and Monographs, (2000).   Google Scholar

[1]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[2]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[3]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[6]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[7]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[9]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[10]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[11]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[14]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[15]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[16]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[17]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[18]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[19]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[20]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

 Impact Factor: 

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]