Citation: |
[1] |
M. Appell, Sur la transformation des équations différentielles linéaires, Comptes rendus hebdomadaires des seánces de l'Académie des sciences 91 (4) (1880), 211-214. |
[2] |
F.V. Atkinson, "Discrete and Continuous Boundary Problems," Academic Press, N.Y., 1964. |
[3] |
M.S.P. Eastham, "The Spectral Theory of periodic differential equations," Scottish Academic Press, London, 1973. |
[4] |
C.T. Fulton, D.B. Pearson, and S. Pruess, New characterizations of spectral density functions for singular Sturm-Liouville problems, J. Comput. Appl. Math (2008) 212 (2), pp. 194-213. |
[5] |
C.T. Fulton, D.B. Pearson, and S. Pruess, Efficient calculation of spectral density functions for specific classes of singular Sturm-Liouville problems, J. Comput. Appl. Math (2008) 212 (2), pp. 150-178. |
[6] |
C.T. Fulton, D.B. Pearson, and S. Pruess, Algorithms for Estimating Spectral Density Functions for Periodic Potentials, preprint, arXiv:1303.5878. |
[7] |
C.T. Fulton, D.B. Pearson, and S. Pruess, Titchmarsh-Weyl theory for tridiagonal Jacobi matrices and computation of their spectral functions, in "Advances in nonlinear analysis: theory, methods and applications," (ed. S. Sivasundaram), Math Probl. Eng. Aerosp. Sci., 3, Camb. Sci. Publ.,(2009), 165-172. |
[8] |
B. Simon, "Szegö's Theorem and Its Descendants," Princeton University Press, Princeton, 2011. |
[9] |
G. Stolz and R. Weikard, "Notes of Seminar on Jacobi Matrices," Dept of Mathematics, University of Alabama, Birmingham, Jan. 2004. |
[10] |
G. Teschl, Jacobi Operators and Completely, Integrable Nonlinear Lattices, Mathematical Surveys and Monographs, Vol 72, Amer. Math. Soc., 2000. |