-
Previous Article
Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space
- PROC Home
- This Issue
-
Next Article
Abstract theory of variational inequalities and Lagrange multipliers
Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator
1. | Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL, 32901-6975, United States |
2. | Department of Mathematics, University of Hull, Cottingham Road, Hull HU6 7RX, United Kingdom |
3. | 1133 N Desert Deer Pass, Green Valley, Arizona 85614-5530, United States |
References:
[1] |
Comptes rendus hebdomadaires des seánces de l'Académie des sciences 91 (4) (1880), 211-214. Google Scholar |
[2] |
Academic Press, N.Y., 1964. |
[3] |
Scottish Academic Press, London, 1973. |
[4] |
J. Comput. Appl. Math (2008) 212 (2), pp. 194-213. |
[5] |
J. Comput. Appl. Math (2008) 212 (2), pp. 150-178. |
[6] |
C.T. Fulton, D.B. Pearson, and S. Pruess, Algorithms for Estimating Spectral Density Functions for Periodic Potentials, preprint,, , (). Google Scholar |
[7] |
in "Advances in nonlinear analysis: theory, methods and applications," (ed. S. Sivasundaram), Math Probl. Eng. Aerosp. Sci., 3, Camb. Sci. Publ.,(2009), 165-172. |
[8] |
Princeton University Press, Princeton, 2011. |
[9] |
Dept of Mathematics, University of Alabama, Birmingham, Jan. 2004. Google Scholar |
[10] |
Mathematical Surveys and Monographs, Vol 72, Amer. Math. Soc., 2000. |
show all references
References:
[1] |
Comptes rendus hebdomadaires des seánces de l'Académie des sciences 91 (4) (1880), 211-214. Google Scholar |
[2] |
Academic Press, N.Y., 1964. |
[3] |
Scottish Academic Press, London, 1973. |
[4] |
J. Comput. Appl. Math (2008) 212 (2), pp. 194-213. |
[5] |
J. Comput. Appl. Math (2008) 212 (2), pp. 150-178. |
[6] |
C.T. Fulton, D.B. Pearson, and S. Pruess, Algorithms for Estimating Spectral Density Functions for Periodic Potentials, preprint,, , (). Google Scholar |
[7] |
in "Advances in nonlinear analysis: theory, methods and applications," (ed. S. Sivasundaram), Math Probl. Eng. Aerosp. Sci., 3, Camb. Sci. Publ.,(2009), 165-172. |
[8] |
Princeton University Press, Princeton, 2011. |
[9] |
Dept of Mathematics, University of Alabama, Birmingham, Jan. 2004. Google Scholar |
[10] |
Mathematical Surveys and Monographs, Vol 72, Amer. Math. Soc., 2000. |
[1] |
Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021047 |
[2] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375 |
[3] |
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216 |
[4] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[5] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
[6] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[7] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[8] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[9] |
Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, 2021, 20 (3) : 975-994. doi: 10.3934/cpaa.2021002 |
[10] |
Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021054 |
[11] |
Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021115 |
[12] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018 |
[13] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011 |
[14] |
Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062 |
[15] |
Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235 |
[16] |
Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021010 |
[17] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[18] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[19] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[20] |
Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]