[1]
|
F. Brock., Rearrangements and applications to symmetry problems in PDE. Handbook of differential equations: stationary partial differential equations. Vol. IV, 1-60, Elsevier/North-Holland, Amsterdam, 2007.
|
[2]
|
G. R. Burton., Rearrangements of functions, maximization of convex functionals and vortex rings. Math. Ann. 276 (1987), 225-253.
|
[3]
|
G. R. Burton., Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. Henri Poincaré 6 (1989), 295-319.
|
[4]
|
G.R. Burton and J.B. McLeod., Maximisation and minimisation on classes of rearrangements. Proc. Roy. Soc. Edinburgh Sect. A, 119 (1991), 287-300.
|
[5]
|
S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi., Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Commun. Math. Phys. 214 (2000), 315-337.
|
[6]
|
F. Cuccu, B. Emamizadeh and G. Porru., Optimization of the first eigenvalue in problems involving the p-Laplacian. Proc. Amer. Math. Soc. 137 (2009), 1677-1687.
|
[7]
|
F. Cuccu and G. Porru., Optimization in problems of heat conduction. Adv. Math. Sci. Appl. 12 (2002), 245-255.
|
[8]
|
F. Cuccu, G. Porru and S. Sakaguchi., Optimization problems on general classes of rearrangements. Nonlinear Analysis 74 (2011), 5554-5565.
|
[9]
|
F. Cuccu, G. Porru and A. Vitolo., Optimization of the energy integral in two classes of rearrangements. Nonlinear Stud. 17 (2010), no. 1, 23-35.
|
[10]
|
J.I. Diaz., Nonlinear partial differential equations and free boundaries. Volume 1. Elliptic equations, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.
|
[11]
|
J. Heinonen, T. Kilpeläinen and O. Martio., Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford, New York, Tokyo, 1993.
|
[12]
|
B. Kawohl., Rearrangements and convexity of level sets in PDE's, Springer, Lectures Notes in Mathematics, n. 1150, 1985.
|
[13]
|
B. Kawohl, M. Lucia and S. Prashanth., Simplicity of the first eigenvalue for indefinite quasilinear problems. Adv. Differential Equations 12 (2007), 407-434.
|
[14]
|
E.H. Lieb and M. Loss., Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001
|
[15]
|
P. Lindqvist., On the equation div$(\nabla u^{p-2} \nabla u)+\lambda|u|^{p-2}u=0$. Proc. Amer. Math. Soc. 109 (1990), 157-164.
|
[16]
|
P. Lindqvist., Addendum: "On the equation div$(\nabla u^{p-2} \nabla u)+\lambda|u|^{p-2}u=0$" [Proc. Amer. Math. Soc. 109 (1990), no. 1, 157-164] Proc. Amer. Math. Soc. 116 (1992), no. 2, 583-584.
|
[17]
|
M. Marras., Optimization in problems involving the p-Laplacian. Electron. J. Differential Equations 2010, No. 02, 10 pp.
|
[18]
|
M. Marras, G. Porru and S. Vernier-Piro., Optimization problems for eigenvalues of p-Laplace equations. J. Math. Anal. Appl. 398 (2013), 766-776.
|
[19]
|
P. Tolksdorf., Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51 (1984), 126-150.
|
[20]
|
N.S. Trudinger., On Harnack type inequalities and their applications to quasilinear elliptic equations. Comm. on Pure and Applied Math. Vol. XX (1967), 721-747.
|
[21]
|
Xu-Jia Wang., A class of fully nonlinear equations and related functionals. Indiana Univ. Math. J. 43 (1994), 25-54.
|