2013, 2013(special): 301-310. doi: 10.3934/proc.2013.2013.301

Optimization problems for the energy integral of p-Laplace equations

1. 

Department of Mathematics and Informatics, Via Ospedale 72, 09124 Cagliari, Italy, Italy

Received  August 2012 Revised  November 2012 Published  November 2013

We study maximization and minimization problems for the energy integral of a sub-linear $p$-Laplace equation in a domain $\Omega$, with weight $\chi_D$, where $D\subset\Omega$ is a variable subset with a fixed measure $\alpha$. We prove Lipschitz continuity for the energy integral of a maximizer and differentiability for the energy integral of the minimizer with respect to $\alpha$.
Citation: Antonio Greco, Giovanni Porru. Optimization problems for the energy integral of p-Laplace equations. Conference Publications, 2013, 2013 (special) : 301-310. doi: 10.3934/proc.2013.2013.301
References:
[1]

F. Brock., Rearrangements and applications to symmetry problems in PDE. Handbook of differential equations: stationary partial differential equations. Vol. IV, 1-60, Elsevier/North-Holland, Amsterdam, 2007.

[2]

G. R. Burton., Rearrangements of functions, maximization of convex functionals and vortex rings. Math. Ann. 276 (1987), 225-253.

[3]

G. R. Burton., Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. Henri Poincaré 6 (1989), 295-319.

[4]

G.R. Burton and J.B. McLeod., Maximisation and minimisation on classes of rearrangements. Proc. Roy. Soc. Edinburgh Sect. A, 119 (1991), 287-300.

[5]

S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi., Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Commun. Math. Phys. 214 (2000), 315-337.

[6]

F. Cuccu, B. Emamizadeh and G. Porru., Optimization of the first eigenvalue in problems involving the p-Laplacian. Proc. Amer. Math. Soc. 137 (2009), 1677-1687.

[7]

F. Cuccu and G. Porru., Optimization in problems of heat conduction. Adv. Math. Sci. Appl. 12 (2002), 245-255.

[8]

F. Cuccu, G. Porru and S. Sakaguchi., Optimization problems on general classes of rearrangements. Nonlinear Analysis 74 (2011), 5554-5565.

[9]

F. Cuccu, G. Porru and A. Vitolo., Optimization of the energy integral in two classes of rearrangements. Nonlinear Stud. 17 (2010), no. 1, 23-35.

[10]

J.I. Diaz., Nonlinear partial differential equations and free boundaries. Volume 1. Elliptic equations, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.

[11]

J. Heinonen, T. Kilpeläinen and O. Martio., Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford, New York, Tokyo, 1993.

[12]

B. Kawohl., Rearrangements and convexity of level sets in PDE's, Springer, Lectures Notes in Mathematics, n. 1150, 1985.

[13]

B. Kawohl, M. Lucia and S. Prashanth., Simplicity of the first eigenvalue for indefinite quasilinear problems. Adv. Differential Equations 12 (2007), 407-434.

[14]

E.H. Lieb and M. Loss., Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001

[15]

P. Lindqvist., On the equation div$(\nabla u^{p-2} \nabla u)+\lambda|u|^{p-2}u=0$. Proc. Amer. Math. Soc. 109 (1990), 157-164.

[16]

P. Lindqvist., Addendum: "On the equation div$(\nabla u^{p-2} \nabla u)+\lambda|u|^{p-2}u=0$" [Proc. Amer. Math. Soc. 109 (1990), no. 1, 157-164] Proc. Amer. Math. Soc. 116 (1992), no. 2, 583-584.

[17]

M. Marras., Optimization in problems involving the p-Laplacian. Electron. J. Differential Equations 2010, No. 02, 10 pp.

[18]

M. Marras, G. Porru and S. Vernier-Piro., Optimization problems for eigenvalues of p-Laplace equations. J. Math. Anal. Appl. 398 (2013), 766-776.

[19]

P. Tolksdorf., Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51 (1984), 126-150.

[20]

N.S. Trudinger., On Harnack type inequalities and their applications to quasilinear elliptic equations. Comm. on Pure and Applied Math. Vol. XX (1967), 721-747.

[21]

Xu-Jia Wang., A class of fully nonlinear equations and related functionals. Indiana Univ. Math. J. 43 (1994), 25-54.

show all references

References:
[1]

F. Brock., Rearrangements and applications to symmetry problems in PDE. Handbook of differential equations: stationary partial differential equations. Vol. IV, 1-60, Elsevier/North-Holland, Amsterdam, 2007.

[2]

G. R. Burton., Rearrangements of functions, maximization of convex functionals and vortex rings. Math. Ann. 276 (1987), 225-253.

[3]

G. R. Burton., Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. Henri Poincaré 6 (1989), 295-319.

[4]

G.R. Burton and J.B. McLeod., Maximisation and minimisation on classes of rearrangements. Proc. Roy. Soc. Edinburgh Sect. A, 119 (1991), 287-300.

[5]

S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi., Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Commun. Math. Phys. 214 (2000), 315-337.

[6]

F. Cuccu, B. Emamizadeh and G. Porru., Optimization of the first eigenvalue in problems involving the p-Laplacian. Proc. Amer. Math. Soc. 137 (2009), 1677-1687.

[7]

F. Cuccu and G. Porru., Optimization in problems of heat conduction. Adv. Math. Sci. Appl. 12 (2002), 245-255.

[8]

F. Cuccu, G. Porru and S. Sakaguchi., Optimization problems on general classes of rearrangements. Nonlinear Analysis 74 (2011), 5554-5565.

[9]

F. Cuccu, G. Porru and A. Vitolo., Optimization of the energy integral in two classes of rearrangements. Nonlinear Stud. 17 (2010), no. 1, 23-35.

[10]

J.I. Diaz., Nonlinear partial differential equations and free boundaries. Volume 1. Elliptic equations, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.

[11]

J. Heinonen, T. Kilpeläinen and O. Martio., Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford, New York, Tokyo, 1993.

[12]

B. Kawohl., Rearrangements and convexity of level sets in PDE's, Springer, Lectures Notes in Mathematics, n. 1150, 1985.

[13]

B. Kawohl, M. Lucia and S. Prashanth., Simplicity of the first eigenvalue for indefinite quasilinear problems. Adv. Differential Equations 12 (2007), 407-434.

[14]

E.H. Lieb and M. Loss., Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001

[15]

P. Lindqvist., On the equation div$(\nabla u^{p-2} \nabla u)+\lambda|u|^{p-2}u=0$. Proc. Amer. Math. Soc. 109 (1990), 157-164.

[16]

P. Lindqvist., Addendum: "On the equation div$(\nabla u^{p-2} \nabla u)+\lambda|u|^{p-2}u=0$" [Proc. Amer. Math. Soc. 109 (1990), no. 1, 157-164] Proc. Amer. Math. Soc. 116 (1992), no. 2, 583-584.

[17]

M. Marras., Optimization in problems involving the p-Laplacian. Electron. J. Differential Equations 2010, No. 02, 10 pp.

[18]

M. Marras, G. Porru and S. Vernier-Piro., Optimization problems for eigenvalues of p-Laplace equations. J. Math. Anal. Appl. 398 (2013), 766-776.

[19]

P. Tolksdorf., Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51 (1984), 126-150.

[20]

N.S. Trudinger., On Harnack type inequalities and their applications to quasilinear elliptic equations. Comm. on Pure and Applied Math. Vol. XX (1967), 721-747.

[21]

Xu-Jia Wang., A class of fully nonlinear equations and related functionals. Indiana Univ. Math. J. 43 (1994), 25-54.

[1]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure and Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[2]

Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463

[3]

Peter A. Hästö. On the existance of minimizers of the variable exponent Dirichlet energy integral. Communications on Pure and Applied Analysis, 2006, 5 (3) : 415-422. doi: 10.3934/cpaa.2006.5.415

[4]

Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111

[5]

Yuri Yatsenko, Natali Hritonenko. Optimization of the lifetime of capital equipment using integral models. Journal of Industrial and Management Optimization, 2005, 1 (4) : 415-432. doi: 10.3934/jimo.2005.1.415

[6]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure and Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[7]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

[8]

Kyungkeun Kang, Jinhae Park. Partial regularity of minimum energy configurations in ferroelectric liquid crystals. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1499-1511. doi: 10.3934/dcds.2013.33.1499

[9]

Zhenhuan Yang, Yiming Ying, Qilong Min. Online optimization for residential PV-ESS energy system scheduling. Mathematical Foundations of Computing, 2019, 2 (1) : 55-71. doi: 10.3934/mfc.2019005

[10]

Toshihiro Iwai, Dmitrií A. Sadovskií, Boris I. Zhilinskií. Angular momentum coupling, Dirac oscillators, and quantum band rearrangements in the presence of momentum reversal symmetries. Journal of Geometric Mechanics, 2020, 12 (3) : 455-505. doi: 10.3934/jgm.2020021

[11]

Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 887-900. doi: 10.3934/dcdss.2019059

[12]

Xuena Yan, Shunfu Jin, Wuyi Yue, Yutaka Takahashi. Performance analysis and system optimization of an energy-saving mechanism in cloud computing with correlated traffic. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021106

[13]

Hao Song, Xiaonong Lu, Xu Zhang, Xiaoan Tang, Qiang Zhang. Collaborative optimization for energy saving and service composition in multi-granularity heavy-duty equipment cloud manufacturing environment. Journal of Industrial and Management Optimization, 2022  doi: 10.3934/jimo.2022063

[14]

Yutian Lei. On the integral systems with negative exponents. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1039-1057. doi: 10.3934/dcds.2015.35.1039

[15]

Gabriella Pinzari. Euler integral and perihelion librations. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6919-6943. doi: 10.3934/dcds.2020165

[16]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[17]

Oliver Jenkinson. Ergodic Optimization. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 197-224. doi: 10.3934/dcds.2006.15.197

[18]

Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017

[19]

William Rundell. Recovering an obstacle using integral equations. Inverse Problems and Imaging, 2009, 3 (2) : 319-332. doi: 10.3934/ipi.2009.3.319

[20]

Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 347-354. doi: 10.3934/dcds.2005.12.347

 Impact Factor: 

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]