\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimization problems for the energy integral of p-Laplace equations

Abstract Related Papers Cited by
  • We study maximization and minimization problems for the energy integral of a sub-linear $p$-Laplace equation in a domain $\Omega$, with weight $\chi_D$, where $D\subset\Omega$ is a variable subset with a fixed measure $\alpha$. We prove Lipschitz continuity for the energy integral of a maximizer and differentiability for the energy integral of the minimizer with respect to $\alpha$.
    Mathematics Subject Classification: Primary: 35J20, 35J92; Secondary: 49K20, 52A40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    F. Brock., Rearrangements and applications to symmetry problems in PDE. Handbook of differential equations: stationary partial differential equations. Vol. IV, 1-60, Elsevier/North-Holland, Amsterdam, 2007.

    [2]

    G. R. Burton., Rearrangements of functions, maximization of convex functionals and vortex rings. Math. Ann. 276 (1987), 225-253.

    [3]

    G. R. Burton., Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. Henri Poincaré 6 (1989), 295-319.

    [4]

    G.R. Burton and J.B. McLeod., Maximisation and minimisation on classes of rearrangements. Proc. Roy. Soc. Edinburgh Sect. A, 119 (1991), 287-300.

    [5]

    S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi., Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes. Commun. Math. Phys. 214 (2000), 315-337.

    [6]

    F. Cuccu, B. Emamizadeh and G. Porru., Optimization of the first eigenvalue in problems involving the p-Laplacian. Proc. Amer. Math. Soc. 137 (2009), 1677-1687.

    [7]

    F. Cuccu and G. Porru., Optimization in problems of heat conduction. Adv. Math. Sci. Appl. 12 (2002), 245-255.

    [8]

    F. Cuccu, G. Porru and S. Sakaguchi., Optimization problems on general classes of rearrangements. Nonlinear Analysis 74 (2011), 5554-5565.

    [9]

    F. Cuccu, G. Porru and A. Vitolo., Optimization of the energy integral in two classes of rearrangements. Nonlinear Stud. 17 (2010), no. 1, 23-35.

    [10]

    J.I. Diaz., Nonlinear partial differential equations and free boundaries. Volume 1. Elliptic equations, Pitman Advanced Publishing Program, Boston, London, Melbourne, 1985.

    [11]

    J. Heinonen, T. Kilpeläinen and O. Martio., Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford, New York, Tokyo, 1993.

    [12]

    B. Kawohl., Rearrangements and convexity of level sets in PDE's, Springer, Lectures Notes in Mathematics, n. 1150, 1985.

    [13]

    B. Kawohl, M. Lucia and S. Prashanth., Simplicity of the first eigenvalue for indefinite quasilinear problems. Adv. Differential Equations 12 (2007), 407-434.

    [14]

    E.H. Lieb and M. Loss., Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001

    [15]

    P. Lindqvist., On the equation div$(\nabla u^{p-2} \nabla u)+\lambda|u|^{p-2}u=0$. Proc. Amer. Math. Soc. 109 (1990), 157-164.

    [16]

    P. Lindqvist., Addendum: "On the equation div$(\nabla u^{p-2} \nabla u)+\lambda|u|^{p-2}u=0$" [Proc. Amer. Math. Soc. 109 (1990), no. 1, 157-164] Proc. Amer. Math. Soc. 116 (1992), no. 2, 583-584.

    [17]

    M. Marras., Optimization in problems involving the p-Laplacian. Electron. J. Differential Equations 2010, No. 02, 10 pp.

    [18]

    M. Marras, G. Porru and S. Vernier-Piro., Optimization problems for eigenvalues of p-Laplace equations. J. Math. Anal. Appl. 398 (2013), 766-776.

    [19]

    P. Tolksdorf., Regularity for a more general class of quasilinear elliptic equations. J. Differential Equations 51 (1984), 126-150.

    [20]

    N.S. Trudinger., On Harnack type inequalities and their applications to quasilinear elliptic equations. Comm. on Pure and Applied Math. Vol. XX (1967), 721-747.

    [21]

    Xu-Jia Wang., A class of fully nonlinear equations and related functionals. Indiana Univ. Math. J. 43 (1994), 25-54.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return