2013, 2013(special): 301-310. doi: 10.3934/proc.2013.2013.301

Optimization problems for the energy integral of p-Laplace equations

1. 

Department of Mathematics and Informatics, Via Ospedale 72, 09124 Cagliari, Italy, Italy

Received  August 2012 Revised  November 2012 Published  November 2013

We study maximization and minimization problems for the energy integral of a sub-linear $p$-Laplace equation in a domain $\Omega$, with weight $\chi_D$, where $D\subset\Omega$ is a variable subset with a fixed measure $\alpha$. We prove Lipschitz continuity for the energy integral of a maximizer and differentiability for the energy integral of the minimizer with respect to $\alpha$.
Citation: Antonio Greco, Giovanni Porru. Optimization problems for the energy integral of p-Laplace equations. Conference Publications, 2013, 2013 (special) : 301-310. doi: 10.3934/proc.2013.2013.301
References:
[1]

F. Brock., Rearrangements and applications to symmetry problems in PDE. Handbook of differential equations: stationary partial differential equations., Vol. IV, (2007), 1.   Google Scholar

[2]

G. R. Burton., Rearrangements of functions,, maximization of convex functionals and vortex rings. Math. Ann. 276 (1987), (1987), 225.   Google Scholar

[3]

G. R. Burton., Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst., Henri Poincaré 6 (1989), (1989), 295.   Google Scholar

[4]

G.R. Burton and J.B. McLeod., Maximisation and minimisation on classes of rearrangements., Proc. Roy. Soc. Edinburgh Sect. A, (1991), 287.   Google Scholar

[5]

S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi., Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes., Commun. Math. Phys. 214 (2000), (2000), 315.   Google Scholar

[6]

F. Cuccu, B. Emamizadeh and G. Porru., Optimization of the first eigenvalue in problems involving the p-Laplacian., Proc. Amer. Math. Soc. 137 (2009), (2009), 1677.   Google Scholar

[7]

F. Cuccu and G. Porru., Optimization in problems of heat conduction., Adv. Math. Sci. Appl. 12 (2002), (2002), 245.   Google Scholar

[8]

F. Cuccu, G. Porru and S. Sakaguchi., Optimization problems on general classes of rearrangements., Nonlinear Analysis 74 (2011), (2011), 5554.   Google Scholar

[9]

F. Cuccu, G. Porru and A. Vitolo., Optimization of the energy integral in two classes of rearrangements., Nonlinear Stud. 17 (2010), (2010), 23.   Google Scholar

[10]

J.I. Diaz., Nonlinear partial differential equations and free boundaries., Volume 1. Elliptic equations, (1985).   Google Scholar

[11]

J. Heinonen, T. Kilpeläinen and O. Martio., Nonlinear Potential Theory of Degenerate Elliptic Equations,, Clarendon Press, (1993).   Google Scholar

[12]

B. Kawohl., Rearrangements and convexity of level sets in PDE's,, Springer, (1150).   Google Scholar

[13]

B. Kawohl, M. Lucia and S. Prashanth., Simplicity of the first eigenvalue for indefinite quasilinear problems., Adv. Differential Equations 12 (2007), (2007), 407.   Google Scholar

[14]

E.H. Lieb and M. Loss., Analysis. Second edition. Graduate Studies in Mathematics, 14., American Mathematical Society, (2001).   Google Scholar

[15]

P. Lindqvist., On the equation div$(\nabla u^{p-2} \nabla u)+\lambda|u|^{p-2}u=0$., Proc. Amer. Math. Soc. 109 (1990), (1990), 157.   Google Scholar

[16]

P. Lindqvist., Addendum: "On the equation div$(\nabla u^{p-2} \nabla u)+\lambda|u|^{p-2}u=0$" [Proc. Amer. Math. Soc. 109 (1990), no. 1, 157-164] Proc., Amer. Math. Soc. 116 (1992), (1992), 583.   Google Scholar

[17]

M. Marras., Optimization in problems involving the p-Laplacian. Electron., J. Differential Equations 2010, (2010).   Google Scholar

[18]

M. Marras, G. Porru and S. Vernier-Piro., Optimization problems for eigenvalues of p-Laplace equations., J. Math. Anal. Appl. 398 (2013), (2013), 766.   Google Scholar

[19]

P. Tolksdorf., Regularity for a more general class of quasilinear elliptic equations., J. Differential Equations 51 (1984), (1984), 126.   Google Scholar

[20]

N.S. Trudinger., On Harnack type inequalities and their applications to quasilinear elliptic equations. Comm., on Pure and Applied Math. Vol. XX (1967), (1967), 721.   Google Scholar

[21]

Xu-Jia Wang., A class of fully nonlinear equations and related functionals., Indiana Univ. Math. J. 43 (1994), (1994), 25.   Google Scholar

show all references

References:
[1]

F. Brock., Rearrangements and applications to symmetry problems in PDE. Handbook of differential equations: stationary partial differential equations., Vol. IV, (2007), 1.   Google Scholar

[2]

G. R. Burton., Rearrangements of functions,, maximization of convex functionals and vortex rings. Math. Ann. 276 (1987), (1987), 225.   Google Scholar

[3]

G. R. Burton., Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst., Henri Poincaré 6 (1989), (1989), 295.   Google Scholar

[4]

G.R. Burton and J.B. McLeod., Maximisation and minimisation on classes of rearrangements., Proc. Roy. Soc. Edinburgh Sect. A, (1991), 287.   Google Scholar

[5]

S. Chanillo, D. Grieser, M. Imai, K. Kurata and I. Ohnishi., Symmetry breaking and other phenomena in the optimization of eigenvalues for composite membranes., Commun. Math. Phys. 214 (2000), (2000), 315.   Google Scholar

[6]

F. Cuccu, B. Emamizadeh and G. Porru., Optimization of the first eigenvalue in problems involving the p-Laplacian., Proc. Amer. Math. Soc. 137 (2009), (2009), 1677.   Google Scholar

[7]

F. Cuccu and G. Porru., Optimization in problems of heat conduction., Adv. Math. Sci. Appl. 12 (2002), (2002), 245.   Google Scholar

[8]

F. Cuccu, G. Porru and S. Sakaguchi., Optimization problems on general classes of rearrangements., Nonlinear Analysis 74 (2011), (2011), 5554.   Google Scholar

[9]

F. Cuccu, G. Porru and A. Vitolo., Optimization of the energy integral in two classes of rearrangements., Nonlinear Stud. 17 (2010), (2010), 23.   Google Scholar

[10]

J.I. Diaz., Nonlinear partial differential equations and free boundaries., Volume 1. Elliptic equations, (1985).   Google Scholar

[11]

J. Heinonen, T. Kilpeläinen and O. Martio., Nonlinear Potential Theory of Degenerate Elliptic Equations,, Clarendon Press, (1993).   Google Scholar

[12]

B. Kawohl., Rearrangements and convexity of level sets in PDE's,, Springer, (1150).   Google Scholar

[13]

B. Kawohl, M. Lucia and S. Prashanth., Simplicity of the first eigenvalue for indefinite quasilinear problems., Adv. Differential Equations 12 (2007), (2007), 407.   Google Scholar

[14]

E.H. Lieb and M. Loss., Analysis. Second edition. Graduate Studies in Mathematics, 14., American Mathematical Society, (2001).   Google Scholar

[15]

P. Lindqvist., On the equation div$(\nabla u^{p-2} \nabla u)+\lambda|u|^{p-2}u=0$., Proc. Amer. Math. Soc. 109 (1990), (1990), 157.   Google Scholar

[16]

P. Lindqvist., Addendum: "On the equation div$(\nabla u^{p-2} \nabla u)+\lambda|u|^{p-2}u=0$" [Proc. Amer. Math. Soc. 109 (1990), no. 1, 157-164] Proc., Amer. Math. Soc. 116 (1992), (1992), 583.   Google Scholar

[17]

M. Marras., Optimization in problems involving the p-Laplacian. Electron., J. Differential Equations 2010, (2010).   Google Scholar

[18]

M. Marras, G. Porru and S. Vernier-Piro., Optimization problems for eigenvalues of p-Laplace equations., J. Math. Anal. Appl. 398 (2013), (2013), 766.   Google Scholar

[19]

P. Tolksdorf., Regularity for a more general class of quasilinear elliptic equations., J. Differential Equations 51 (1984), (1984), 126.   Google Scholar

[20]

N.S. Trudinger., On Harnack type inequalities and their applications to quasilinear elliptic equations. Comm., on Pure and Applied Math. Vol. XX (1967), (1967), 721.   Google Scholar

[21]

Xu-Jia Wang., A class of fully nonlinear equations and related functionals., Indiana Univ. Math. J. 43 (1994), (1994), 25.   Google Scholar

[1]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[2]

Philipp Reiter. Regularity theory for the Möbius energy. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1463-1471. doi: 10.3934/cpaa.2010.9.1463

[3]

Peter A. Hästö. On the existance of minimizers of the variable exponent Dirichlet energy integral. Communications on Pure & Applied Analysis, 2006, 5 (3) : 415-422. doi: 10.3934/cpaa.2006.5.415

[4]

Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111

[5]

Yuri Yatsenko, Natali Hritonenko. Optimization of the lifetime of capital equipment using integral models. Journal of Industrial & Management Optimization, 2005, 1 (4) : 415-432. doi: 10.3934/jimo.2005.1.415

[6]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[7]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

[8]

Kyungkeun Kang, Jinhae Park. Partial regularity of minimum energy configurations in ferroelectric liquid crystals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1499-1511. doi: 10.3934/dcds.2013.33.1499

[9]

Zhenhuan Yang, Yiming Ying, Qilong Min. Online optimization for residential PV-ESS energy system scheduling. Mathematical Foundations of Computing, 2019, 2 (1) : 55-71. doi: 10.3934/mfc.2019005

[10]

Yang Chen, Xiaoguang Xu, Yong Wang. Wireless sensor network energy efficient coverage method based on intelligent optimization algorithm. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 887-900. doi: 10.3934/dcdss.2019059

[11]

Yutian Lei. On the integral systems with negative exponents. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1039-1057. doi: 10.3934/dcds.2015.35.1039

[12]

Natalia Skripnik. Averaging of fuzzy integral equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1999-2010. doi: 10.3934/dcdsb.2017118

[13]

Oliver Jenkinson. Ergodic Optimization. Discrete & Continuous Dynamical Systems - A, 2006, 15 (1) : 197-224. doi: 10.3934/dcds.2006.15.197

[14]

Xiaohui Yu. Liouville type theorems for singular integral equations and integral systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1825-1840. doi: 10.3934/cpaa.2016017

[15]

William Rundell. Recovering an obstacle using integral equations. Inverse Problems & Imaging, 2009, 3 (2) : 319-332. doi: 10.3934/ipi.2009.3.319

[16]

Wenxiong Chen, Congming Li, Biao Ou. Qualitative properties of solutions for an integral equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 347-354. doi: 10.3934/dcds.2005.12.347

[17]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[18]

Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925

[19]

Patricia J.Y. Wong. Existence of solutions to singular integral equations. Conference Publications, 2009, 2009 (Special) : 818-827. doi: 10.3934/proc.2009.2009.818

[20]

Martin Bauer, Thomas Fidler, Markus Grasmair. Local uniqueness of the circular integral invariant. Inverse Problems & Imaging, 2013, 7 (1) : 107-122. doi: 10.3934/ipi.2013.7.107

 Impact Factor: 

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]