• Previous Article
    Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization
  • PROC Home
  • This Issue
  • Next Article
    $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems
2013, 2013(special): 345-354. doi: 10.3934/proc.2013.2013.345

Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

Received  August 2012 Revised  December 2012 Published  November 2013

The global existence of weak solutions to quasilinear ``degenerate'' Keller-Segel systems is shown in the recent papers [3], [4]. This paper gives some improvements and supplements of these. More precisely, the differentiability and the smallness of initial data are weakened when the spatial dimension $N$ satisfies $N\geq2$. Moreover, the global existence is established in the case $N=1$ which is unsolved in [4].
Citation: Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345
References:
[1]

T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol. 58 (2009), 58 (2009), 183.   Google Scholar

[2]

S. Ishida, A study on the solvability of degenerate Keller-Segel systems,, Ph.D. thesis., ().   Google Scholar

[3]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, J. Differential Equations 252 (2012), 252 (2012), 1421.   Google Scholar

[4]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data,, J. Differential Equations 252 (2012), 252 (2012), 2469.   Google Scholar

[5]

E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol. 26 (1970), 26 (1970), 399.   Google Scholar

[6]

M. Nakao, Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations,, Nonlinear Anal. 10 (1986), 10 (1986), 299.   Google Scholar

[7]

Y. Sugiyama, Global existence in the sub-critical cases and finite time blow-up in the super-critical cases to degenerate Keller-Segel systems,, Differential Integral Equations 19 (2006), 19 (2006), 841.   Google Scholar

[8]

Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term,, J. Differential Equations 227 (2006), 227 (2006), 333.   Google Scholar

[9]

Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations 252 (2012), 252 (2012), 692.   Google Scholar

[10]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations 248 (2010), 248 (2010), 2889.   Google Scholar

show all references

References:
[1]

T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol. 58 (2009), 58 (2009), 183.   Google Scholar

[2]

S. Ishida, A study on the solvability of degenerate Keller-Segel systems,, Ph.D. thesis., ().   Google Scholar

[3]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, J. Differential Equations 252 (2012), 252 (2012), 1421.   Google Scholar

[4]

S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data,, J. Differential Equations 252 (2012), 252 (2012), 2469.   Google Scholar

[5]

E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol. 26 (1970), 26 (1970), 399.   Google Scholar

[6]

M. Nakao, Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations,, Nonlinear Anal. 10 (1986), 10 (1986), 299.   Google Scholar

[7]

Y. Sugiyama, Global existence in the sub-critical cases and finite time blow-up in the super-critical cases to degenerate Keller-Segel systems,, Differential Integral Equations 19 (2006), 19 (2006), 841.   Google Scholar

[8]

Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term,, J. Differential Equations 227 (2006), 227 (2006), 333.   Google Scholar

[9]

Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations 252 (2012), 252 (2012), 692.   Google Scholar

[10]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations 248 (2010), 248 (2010), 2889.   Google Scholar

[1]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[4]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[5]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[6]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[9]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[10]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[11]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[16]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[17]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[18]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[19]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[20]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

 Impact Factor: 

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]