Citation: |
[1] |
T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol. 58 (2009), 183-217. |
[2] |
S. Ishida, A study on the solvability of degenerate Keller-Segel systems, Ph.D. thesis. |
[3] |
S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, J. Differential Equations 252 (2012), 1421-1440. |
[4] |
S. Ishida, T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data, J. Differential Equations 252 (2012), 2469-2491. |
[5] |
E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26 (1970), 399-415. |
[6] |
M. Nakao, Global solutions for some nonlinear parabolic equations with nonmonotonic perturbations, Nonlinear Anal. 10 (1986), 299-314. |
[7] |
Y. Sugiyama, Global existence in the sub-critical cases and finite time blow-up in the super-critical cases to degenerate Keller-Segel systems, Differential Integral Equations 19 (2006), 841-876. |
[8] |
Y. Sugiyama, H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations 227 (2006), 333-364. |
[9] |
Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations 252 (2012), 692-715. |
[10] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations 248 (2010), 2889-2905. |