2013, 2013(special): 355-363. doi: 10.3934/proc.2013.2013.355

Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization

1. 

Department of Mathematics, South Asian University, Akbar Bhawan, Chanakyapuri, New Delhi-110021, India

Received  September 2012 Published  November 2013

A general scheme for the numerical solution of nonlinear singular perturbation problems using nonpolynomial spline basis is proposed in the paper. The special non-equidistant formulation of mesh takes into account the boundary and interior layer structures. The proposed scheme is almost fourth order accurate and applicable to both singular and nonsingular cases. Convergence analysis of the scheme is briefly discussed. Maple program for the generation of difference scheme is presented. Computational illustrations characterized by boundary and interior layers show that the practical order of accuracy is close to the theoretical order of the method.
Citation: Navnit Jha. Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization. Conference Publications, 2013, 2013 (special) : 355-363. doi: 10.3934/proc.2013.2013.355
References:
[1]

A. H. Nayfeh, "Introduction to Perturbation Technique,", A Wiley-Interscience Publication. Wiley-Interscience [John Wiley & Sons], (1981).   Google Scholar

[2]

K. W. Chang and F. A. Howes, "Nonlinear Singular Perturbation Phenomena: Theory and Applications,", Applied Mathematical Sciences, (1984).   Google Scholar

[3]

J. Kevorkian and J. D. Cole, "Multi Scale and Singular Perturbation Methods,", Applied Mathematical Sciences, (1996).   Google Scholar

[4]

E.O'Riordan and M. Stynes, A uniformly accurate finite element method for a singularly perturbed one-dimensional reaction diffusion problem,, Math. Comput., 47 (1986), 555.   Google Scholar

[5]

R. Vulanovic, Fourth order algorithms for semilinear singular perturbation problems,, Numer. Algorithms, 16 (1997), 117.   Google Scholar

[6]

R. K. Mohanty, N. Jha and D. J. Evans, capitalized., Spline in compression method for the numerical solution of singularly perturbed two point singular boundary value problems,, Int. J. Comput. Math., 81 (2004), 615.   Google Scholar

[7]

M. Kumar, P. Singh and H. K. Mishra, capitalized., An initial value technique for singularly perturbed boundary value problems via cubic spline,, Int. J. Comput. Meth. Eng. Sc. Mech., 8 (2007), 419.   Google Scholar

[8]

C. Y. Jung and R. Temam, Finite volume approximation of one dimensional stiff convection-diffusion equation,, J. Sci. Comput., 41 (2009), 384.   Google Scholar

[9]

R. Lin, A robust finite element method for singularly perturbed convection-diffusion problems,, Discrete Contin. Dyn. Syst., 9 (2009), 496.   Google Scholar

[10]

B. Lin, K. Li and Z. Cheng, B-spline solution of a singularly perturbed boundary value problem arising in biology,, Chaos, 42 (2009), 2934.   Google Scholar

[11]

F. Xie, On a class of singular boundary value problems with singular perturbation,, J. Differential Equations, 252 (2012), 2370.   Google Scholar

[12]

I. A. Tirmizi, F. I. Haq and S. I. Islam, capitalized., Nonpolynomial spline solution of singularly perturbed boundary value problems,, Appl. Math. Comput., 196 (2008), 6.   Google Scholar

[13]

L. K. Bieniasz, Two new compact finite difference schemes for the solution of boundary value problems in second order nonlinear ordinary differential equations, using non-uniform grids,, J. Comput. Methods Sci. Eng., 8 (2008), 3.   Google Scholar

[14]

R. K. Mohanty, A class of non-uniform mesh three point arithmetic average discretizations for y"=f(x,y,y') and the estimates of y',, Appl. Math. Comput., 183 (2006), 477.   Google Scholar

[15]

A. Khan, I. Khan and T. Aziz, Sextic spline solution of a singularly perturbed boundary value problems,, Appl. Math. Comput., 181 (2006), 432.   Google Scholar

[16]

M. K. Kadalbajoo and R. K. Bawa, Variable mesh difference scheme for singularly perturbed boundary value problems using splines,, J. Optim. Theory Appl., 90 (1996), 405.   Google Scholar

[17]

M. C. Natividad and M. Stynes, Richardson extrapolation for a convection-diffusion problem using a Shishkin mesh,, Appl. Numer. Math., 45 (2003), 315.   Google Scholar

[18]

C. E. Pearson, On non-linear ordinary differential equations of boundary layer type,, J. Math. Phy., 47 (1968), 351.   Google Scholar

[19]

M. K. Kadalbajoo and K. C. Patidar, Numerical solution of singularly perturbed nonlinear two point boundary value problems by spline in compression,, Int. J. Comput. Math., 79 (2002), 271.   Google Scholar

show all references

References:
[1]

A. H. Nayfeh, "Introduction to Perturbation Technique,", A Wiley-Interscience Publication. Wiley-Interscience [John Wiley & Sons], (1981).   Google Scholar

[2]

K. W. Chang and F. A. Howes, "Nonlinear Singular Perturbation Phenomena: Theory and Applications,", Applied Mathematical Sciences, (1984).   Google Scholar

[3]

J. Kevorkian and J. D. Cole, "Multi Scale and Singular Perturbation Methods,", Applied Mathematical Sciences, (1996).   Google Scholar

[4]

E.O'Riordan and M. Stynes, A uniformly accurate finite element method for a singularly perturbed one-dimensional reaction diffusion problem,, Math. Comput., 47 (1986), 555.   Google Scholar

[5]

R. Vulanovic, Fourth order algorithms for semilinear singular perturbation problems,, Numer. Algorithms, 16 (1997), 117.   Google Scholar

[6]

R. K. Mohanty, N. Jha and D. J. Evans, capitalized., Spline in compression method for the numerical solution of singularly perturbed two point singular boundary value problems,, Int. J. Comput. Math., 81 (2004), 615.   Google Scholar

[7]

M. Kumar, P. Singh and H. K. Mishra, capitalized., An initial value technique for singularly perturbed boundary value problems via cubic spline,, Int. J. Comput. Meth. Eng. Sc. Mech., 8 (2007), 419.   Google Scholar

[8]

C. Y. Jung and R. Temam, Finite volume approximation of one dimensional stiff convection-diffusion equation,, J. Sci. Comput., 41 (2009), 384.   Google Scholar

[9]

R. Lin, A robust finite element method for singularly perturbed convection-diffusion problems,, Discrete Contin. Dyn. Syst., 9 (2009), 496.   Google Scholar

[10]

B. Lin, K. Li and Z. Cheng, B-spline solution of a singularly perturbed boundary value problem arising in biology,, Chaos, 42 (2009), 2934.   Google Scholar

[11]

F. Xie, On a class of singular boundary value problems with singular perturbation,, J. Differential Equations, 252 (2012), 2370.   Google Scholar

[12]

I. A. Tirmizi, F. I. Haq and S. I. Islam, capitalized., Nonpolynomial spline solution of singularly perturbed boundary value problems,, Appl. Math. Comput., 196 (2008), 6.   Google Scholar

[13]

L. K. Bieniasz, Two new compact finite difference schemes for the solution of boundary value problems in second order nonlinear ordinary differential equations, using non-uniform grids,, J. Comput. Methods Sci. Eng., 8 (2008), 3.   Google Scholar

[14]

R. K. Mohanty, A class of non-uniform mesh three point arithmetic average discretizations for y"=f(x,y,y') and the estimates of y',, Appl. Math. Comput., 183 (2006), 477.   Google Scholar

[15]

A. Khan, I. Khan and T. Aziz, Sextic spline solution of a singularly perturbed boundary value problems,, Appl. Math. Comput., 181 (2006), 432.   Google Scholar

[16]

M. K. Kadalbajoo and R. K. Bawa, Variable mesh difference scheme for singularly perturbed boundary value problems using splines,, J. Optim. Theory Appl., 90 (1996), 405.   Google Scholar

[17]

M. C. Natividad and M. Stynes, Richardson extrapolation for a convection-diffusion problem using a Shishkin mesh,, Appl. Numer. Math., 45 (2003), 315.   Google Scholar

[18]

C. E. Pearson, On non-linear ordinary differential equations of boundary layer type,, J. Math. Phy., 47 (1968), 351.   Google Scholar

[19]

M. K. Kadalbajoo and K. C. Patidar, Numerical solution of singularly perturbed nonlinear two point boundary value problems by spline in compression,, Int. J. Comput. Math., 79 (2002), 271.   Google Scholar

[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[7]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[8]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[9]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[10]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[11]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[12]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[13]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[14]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[15]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[16]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[17]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[18]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[19]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[20]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

 Impact Factor: 

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]