\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Regularity of a vector valued two phase free boundary problems

Abstract / Introduction Related Papers Cited by
  • Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$, $n\geq2$ and $\Sigma$ be a $q$ dimensional smooth submanifold of $\mathbb{R}^{m}$ with $0 \leq q < m$. We use $\mathcal{M}_{\Omega,\Sigma}$ to denote the collection of all pairs of $(A,u) $ such that $A\subset\Omega$ is a set of finite perimeter and $u\in H^{1}\left( \Omega,\mathbb{R}^{m}\right) $ satisfies \[ u\left( x\right) \in\Sigma\text{ a.e. }x\in A. \] We consider the energy functional \[ E_{\Omega}\left( A,u\right) =\int_{\Omega}\left\vert \nabla u\right\vert ^{2}+P_{\Omega}\left( A\right) , \] defined on $\mathcal{M}_{\Omega,\Sigma}$, where $P_{\Omega}\left( A\right) $ denotes the perimeter of $A$ inside $\Omega$. Let $\left( A,u\right) $ be a local energy minimizer. Our main result is that when $n\leq7$, $u$ is locally Lipschitz and the free boundary $\partial A$ is smooth in $\Omega$.
    Mathematics Subject Classification: Primary: 35R35; Secondary: 35J20, 76A15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. Athanasopoulos, L. A. Caffarelli, C. Kenig, and S. Salsa., An area-Dirichlet integral minimization problem. Comm. Pure Appl. Math., 54(4):479-499, 2001.

    [2]

    Lawrence C. Evans and Ronald F. Gariepy., Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.

    [3]

    P. G. De Gennes., The physics of liquid crystals. Studies in Advanced Mathematics. Clarendon Press, Oxford, 1974.

    [4]

    Huiqiang Jiang., Analytic regularity of a free boundary problem. Calc. Var. Partial Differential Equations, 28(1):1-14, 2007.

    [5]

    Huiqiang Jiang and Christopher Larsen., Analyticity for a two dimensional free boundary problem with volume constraint. Preprint.

    [6]

    Huiqiang Jiang, Christopher J. Larsen, and Luis Silvestre., Full regularity of a free boundary problem with two phases. Calc. Var. Partial Differential Equations, 42(3-4):301-321, 2011.

    [7]

    Huiqiang Jiang and Fanghua Lin., A new type of free boundary problem with volume constraint. Comm. Partial Differential Equations, 29(5-6):821-865, 2004.

    [8]

    Paolo Tilli., On a constrained variational problem with an arbitrary number of free boundaries. Interfaces Free Bound., 2(2):201-212, 2000.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(75) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return