• Previous Article
    Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid
  • PROC Home
  • This Issue
  • Next Article
    Nonpolynomial spline finite difference scheme for nonlinear singuiar boundary value problems with singular perturbation and its mechanization
2013, 2013(special): 365-374. doi: 10.3934/proc.2013.2013.365

Regularity of a vector valued two phase free boundary problems

1. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA, 15024, United States

Received  September 2012 Revised  December 2012 Published  November 2013

Let $\Omega$ be a bounded domain in $\mathbb{R}^{n}$, $n\geq2$ and $\Sigma$ be a $q$ dimensional smooth submanifold of $\mathbb{R}^{m}$ with $0 \leq q < m$. We use $\mathcal{M}_{\Omega,\Sigma}$ to denote the collection of all pairs of $(A,u) $ such that $A\subset\Omega$ is a set of finite perimeter and $u\in H^{1}\left( \Omega,\mathbb{R}^{m}\right) $ satisfies \[ u\left( x\right) \in\Sigma\text{ a.e. }x\in A. \] We consider the energy functional \[ E_{\Omega}\left( A,u\right) =\int_{\Omega}\left\vert \nabla u\right\vert ^{2}+P_{\Omega}\left( A\right) , \] defined on $\mathcal{M}_{\Omega,\Sigma}$, where $P_{\Omega}\left( A\right) $ denotes the perimeter of $A$ inside $\Omega$. Let $\left( A,u\right) $ be a local energy minimizer. Our main result is that when $n\leq7$, $u$ is locally Lipschitz and the free boundary $\partial A$ is smooth in $\Omega$.
Citation: Huiqiang Jiang. Regularity of a vector valued two phase free boundary problems. Conference Publications, 2013, 2013 (special) : 365-374. doi: 10.3934/proc.2013.2013.365
References:
[1]

I. Athanasopoulos, L. A. Caffarelli, C. Kenig, and S. Salsa., An area-Dirichlet integral minimization problem., {\em Comm. Pure Appl. Math.}, (2001), 479.   Google Scholar

[2]

Lawrence C. Evans and Ronald F. Gariepy., Measure theory and fine properties of functions., Studies in Advanced Mathematics. CRC Press, (1992).   Google Scholar

[3]

P. G. De Gennes., The physics of liquid crystals., Studies in Advanced Mathematics. Clarendon Press, (1974).   Google Scholar

[4]

Huiqiang Jiang., Analytic regularity of a free boundary problem., {\em Calc. Var. Partial Differential Equations}, (2007), 1.   Google Scholar

[5]

Huiqiang Jiang and Christopher Larsen., Analyticity for a two dimensional free boundary problem with volume constraint., Preprint., ().   Google Scholar

[6]

Huiqiang Jiang, Christopher J. Larsen, and Luis Silvestre., Full regularity of a free boundary problem with two phases., {\em Calc. Var. Partial Differential Equations}, (2011), 3.   Google Scholar

[7]

Huiqiang Jiang and Fanghua Lin., A new type of free boundary problem with volume constraint., {\em Comm. Partial Differential Equations}, (2004), 5.   Google Scholar

[8]

Paolo Tilli., On a constrained variational problem with an arbitrary number of free boundaries., {\em Interfaces Free Bound.}, (2000), 201.   Google Scholar

show all references

References:
[1]

I. Athanasopoulos, L. A. Caffarelli, C. Kenig, and S. Salsa., An area-Dirichlet integral minimization problem., {\em Comm. Pure Appl. Math.}, (2001), 479.   Google Scholar

[2]

Lawrence C. Evans and Ronald F. Gariepy., Measure theory and fine properties of functions., Studies in Advanced Mathematics. CRC Press, (1992).   Google Scholar

[3]

P. G. De Gennes., The physics of liquid crystals., Studies in Advanced Mathematics. Clarendon Press, (1974).   Google Scholar

[4]

Huiqiang Jiang., Analytic regularity of a free boundary problem., {\em Calc. Var. Partial Differential Equations}, (2007), 1.   Google Scholar

[5]

Huiqiang Jiang and Christopher Larsen., Analyticity for a two dimensional free boundary problem with volume constraint., Preprint., ().   Google Scholar

[6]

Huiqiang Jiang, Christopher J. Larsen, and Luis Silvestre., Full regularity of a free boundary problem with two phases., {\em Calc. Var. Partial Differential Equations}, (2011), 3.   Google Scholar

[7]

Huiqiang Jiang and Fanghua Lin., A new type of free boundary problem with volume constraint., {\em Comm. Partial Differential Equations}, (2004), 5.   Google Scholar

[8]

Paolo Tilli., On a constrained variational problem with an arbitrary number of free boundaries., {\em Interfaces Free Bound.}, (2000), 201.   Google Scholar

[1]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[2]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[3]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[4]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[7]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[8]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[9]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[12]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[13]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[18]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[19]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[20]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

 Impact Factor: 

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]