2013, 2013(special): 375-384. doi: 10.3934/proc.2013.2013.375

Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid

1. 

Grupo Dinámica No Lineal(ICAI), Universidad Pontificia Comillas, C/Alberto Aguilera 23, 28015 Madrid

2. 

Grupo Interdisciplinar de Sistemas Complejos (GISC) and Grupo de Dinmica No Lineal (DNL), Escuela Tcnica Superior de Ingeniera (ICAI), Universidad Pontificia Comillas, E28015, Madrid, Spain

3. 

Grupo de Dinmica No Lineal (DNL), Departamento de Matemtica Aplicada y Computacin, Escuela Tcnica Superior de Ingeniera (ICAI), Universidad Ponti cia Comillas, E28015, Madrid, Spain

Received  July 2012 Published  November 2013

We analyse the motion of a viscoelastic fluid in the interior of a closed loop thermosyphon under the effects of natural convection. We consider a viscoelastic fluid described by the Maxwell constitutive equation. This fluid presents elastic-like behavior and memory effects. We study the asymptotic properties of the fluid inside the thermosyphon and derive the exact equations of motion in the inertial manifold that characterize the asymptotic behavior. Our work is a generalization of some previous results on standard (Newtonian) fluids.
Citation: A. Jiménez-Casas, Mario Castro, Justine Yassapan. Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid. Conference Publications, 2013, 2013 (special) : 375-384. doi: 10.3934/proc.2013.2013.375
References:
[1]

A. M. Bloch and E. S. Titi, On the dynamics of rotating elastic beams, in New Trends in System Theory, Progr. Systems Control Theory 7, Birkhäuser Boston, Boston, MA, 128-135, (1991).

[2]

C. Foias, G. R. Sell and R. Temam, Inertial Manifolds for Nonlinear Evolution Equations, J. Diff. Equ., 73 (1988), 309-353.

[3]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, (1988).

[4]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lectures Notes in Mathematics, 840 (1982), Springer-Verlag, Berlin, New York.

[5]

A. Jiménez-Casas and A. M. L. Ovejero, Numerical analysis of a closed-loop thermosyphon including the Soret effect, Appl. Math. Comput., 124 (2001), 289-318.

[6]

A. Jiménez-Casas and A. Rodríguez-Bernal, Finite-dimensional asymptotic behavior in a thermosyphon including the Soret effect, Math. Meth. in the Appl. Sci., 22, (1999), 117-137.

[7]

B. Keller, Periodic oscillations in a model of thermal convection, J. Fluid Mech., 26 (1966), 599-606.

[8]

F. Morrison, Understanding rheology, Oxford University Press, 2001, USA.

[9]

A. Rodríguez-Bernal and E. S. Van Vleck, Diffusion Induced Chaos in a Closed Loop Thermosyphon, SIAM J. Appl. Math., 58 (1998), 1072-1093(electronic).

[10]

A. M. Stuart, "Perturbation Theory of Infinite-Dimensional Dynamical Systems," in Theory and Numerics of Ordinary and Partial differential Equations, M. Ainsworth, J. Levesley, W.A. Light and M. Marletta, eds. (1994), Oxford University Press, Oxford, UK.

[11]

J. J. L. Velázquez, On the dynamics of a closed thermosyphon, SIAM J. Appl. Math. 54 (1994), 1561-1593.

[12]

P. Welander, On the oscillatory instability of a differentially heated fluid loop, J. Fluid Mech., 29 (1967), 17-30.

[13]

J. Yasappan, A. Jiménez-Casas and Mario Castro, "Asymptotic Behavior of a Viscoelastic Fluid in a Closed Loop Thermosyphon: Physical Derivation, Asymptotic Analysis and Numerical Experiments," Abstr. Appl. Anal., (2013).

[14]

J. Yasappan, A. Jiménez-Casas and Mario Castro, Chaotic behavior of the closed loop thermosyphon model with memory effects, submitted, (2012).

show all references

References:
[1]

A. M. Bloch and E. S. Titi, On the dynamics of rotating elastic beams, in New Trends in System Theory, Progr. Systems Control Theory 7, Birkhäuser Boston, Boston, MA, 128-135, (1991).

[2]

C. Foias, G. R. Sell and R. Temam, Inertial Manifolds for Nonlinear Evolution Equations, J. Diff. Equ., 73 (1988), 309-353.

[3]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, (1988).

[4]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lectures Notes in Mathematics, 840 (1982), Springer-Verlag, Berlin, New York.

[5]

A. Jiménez-Casas and A. M. L. Ovejero, Numerical analysis of a closed-loop thermosyphon including the Soret effect, Appl. Math. Comput., 124 (2001), 289-318.

[6]

A. Jiménez-Casas and A. Rodríguez-Bernal, Finite-dimensional asymptotic behavior in a thermosyphon including the Soret effect, Math. Meth. in the Appl. Sci., 22, (1999), 117-137.

[7]

B. Keller, Periodic oscillations in a model of thermal convection, J. Fluid Mech., 26 (1966), 599-606.

[8]

F. Morrison, Understanding rheology, Oxford University Press, 2001, USA.

[9]

A. Rodríguez-Bernal and E. S. Van Vleck, Diffusion Induced Chaos in a Closed Loop Thermosyphon, SIAM J. Appl. Math., 58 (1998), 1072-1093(electronic).

[10]

A. M. Stuart, "Perturbation Theory of Infinite-Dimensional Dynamical Systems," in Theory and Numerics of Ordinary and Partial differential Equations, M. Ainsworth, J. Levesley, W.A. Light and M. Marletta, eds. (1994), Oxford University Press, Oxford, UK.

[11]

J. J. L. Velázquez, On the dynamics of a closed thermosyphon, SIAM J. Appl. Math. 54 (1994), 1561-1593.

[12]

P. Welander, On the oscillatory instability of a differentially heated fluid loop, J. Fluid Mech., 29 (1967), 17-30.

[13]

J. Yasappan, A. Jiménez-Casas and Mario Castro, "Asymptotic Behavior of a Viscoelastic Fluid in a Closed Loop Thermosyphon: Physical Derivation, Asymptotic Analysis and Numerical Experiments," Abstr. Appl. Anal., (2013).

[14]

J. Yasappan, A. Jiménez-Casas and Mario Castro, Chaotic behavior of the closed loop thermosyphon model with memory effects, submitted, (2012).

[1]

Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657

[2]

Giovambattista Amendola, Sandra Carillo, John Murrough Golden, Adele Manes. Viscoelastic fluids: Free energies, differential problems and asymptotic behaviour. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1815-1835. doi: 10.3934/dcdsb.2014.19.1815

[3]

Tomás Caraballo, I. D. Chueshov, Pedro Marín-Rubio, José Real. Existence and asymptotic behaviour for stochastic heat equations with multiplicative noise in materials with memory. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 253-270. doi: 10.3934/dcds.2007.18.253

[4]

Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019

[5]

Jacek Banasiak, Proscovia Namayanja. Asymptotic behaviour of flows on reducible networks. Networks and Heterogeneous Media, 2014, 9 (2) : 197-216. doi: 10.3934/nhm.2014.9.197

[6]

Dorin Ieşan. Strain gradient theory of porous solids with initial stresses and initial heat flux. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2169-2187. doi: 10.3934/dcdsb.2014.19.2169

[7]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden, Adele Manes. Energy stability for thermo-viscous fluids with a fading memory heat flux. Evolution Equations and Control Theory, 2015, 4 (3) : 265-279. doi: 10.3934/eect.2015.4.265

[8]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5305-5319. doi: 10.3934/dcdsb.2020344

[9]

Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, 2021, 29 (5) : 3081-3096. doi: 10.3934/era.2021027

[10]

Yinnian He, Yi Li. Asymptotic behavior of linearized viscoelastic flow problem. Discrete and Continuous Dynamical Systems - B, 2008, 10 (4) : 843-856. doi: 10.3934/dcdsb.2008.10.843

[11]

Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations and Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1

[12]

Xiaoli Wang, Peter Kloeden, Meihua Yang. Asymptotic behaviour of a neural field lattice model with delays. Electronic Research Archive, 2020, 28 (2) : 1037-1048. doi: 10.3934/era.2020056

[13]

Luis Caffarelli, Juan-Luis Vázquez. Asymptotic behaviour of a porous medium equation with fractional diffusion. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1393-1404. doi: 10.3934/dcds.2011.29.1393

[14]

Maria Rosaria Lancia, Paola Vernole. The Stokes problem in fractal domains: Asymptotic behaviour of the solutions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1553-1565. doi: 10.3934/dcdss.2020088

[15]

Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206

[16]

María Anguiano, P.E. Kloeden. Asymptotic behaviour of the nonautonomous SIR equations with diffusion. Communications on Pure and Applied Analysis, 2014, 13 (1) : 157-173. doi: 10.3934/cpaa.2014.13.157

[17]

Jorge Ferreira, Mauro De Lima Santos. Asymptotic behaviour for wave equations with memory in a noncylindrical domains. Communications on Pure and Applied Analysis, 2003, 2 (4) : 511-520. doi: 10.3934/cpaa.2003.2.511

[18]

Roberto Triggiani, Jing Zhang. Heat-viscoelastic plate interaction: Analyticity, spectral analysis, exponential decay. Evolution Equations and Control Theory, 2018, 7 (1) : 153-182. doi: 10.3934/eect.2018008

[19]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[20]

Victor Zvyagin, Vladimir Orlov. On one problem of viscoelastic fluid dynamics with memory on an infinite time interval. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3855-3877. doi: 10.3934/dcdsb.2018114

 Impact Factor: 

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (0)

[Back to Top]