
Previous Article
The nonlinear Schrödinger equation created by the vibrations of an elastic plate and its dimensional expansion
 PROC Home
 This Issue

Next Article
The characterization of maximal invariant sets of nonlinear discretetime control dynamical systems
Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion
1.  Department of Mathematics and Mechanics, SaintPetersburg State University, SaintPetersburg, 198504, Russian Federation, Russian Federation 
References:
show all references
References:
[1] 
Yuri Kalinin, Volker Reitmann, Nayil Yumaguzin. Asymptotic behavior of Maxwell's equation in onespace dimension with thermal effect. Conference Publications, 2011, 2011 (Special) : 754762. doi: 10.3934/proc.2011.2011.754 
[2] 
Hongwei Zhang, Qingying Hu. Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Communications on Pure and Applied Analysis, 2005, 4 (4) : 861869. doi: 10.3934/cpaa.2005.4.861 
[3] 
S. J. Li, Z. M. Fang. On the stability of a dual weak vector variational inequality problem. Journal of Industrial and Management Optimization, 2008, 4 (1) : 155165. doi: 10.3934/jimo.2008.4.155 
[4] 
T. A. Shaposhnikova, M. N. Zubova. Homogenization problem for a parabolic variational inequality with constraints on subsets situated on the boundary of the domain. Networks and Heterogeneous Media, 2008, 3 (3) : 675689. doi: 10.3934/nhm.2008.3.675 
[5] 
M. Ben Ayed, Abdelbaki Selmi. Asymptotic behavior and existence results for a biharmonic equation involving the critical Sobolev exponent in a fivedimensional domain. Communications on Pure and Applied Analysis, 2010, 9 (6) : 17051722. doi: 10.3934/cpaa.2010.9.1705 
[6] 
Haiyang He. Asymptotic behavior of the ground state Solutions for Hénon equation with Robin boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 23932408. doi: 10.3934/cpaa.2013.12.2393 
[7] 
Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of timedomain Maxwell's equations in biperiodic structures. Discrete and Continuous Dynamical Systems  B, 2020, 25 (1) : 259286. doi: 10.3934/dcdsb.2019181 
[8] 
Oleg Yu. Imanuvilov, Masahiro Yamamoto. Calderón problem for Maxwell's equations in cylindrical domain. Inverse Problems and Imaging, 2014, 8 (4) : 11171137. doi: 10.3934/ipi.2014.8.1117 
[9] 
Bernard Brighi, S. Guesmia. Asymptotic behavior of solution of hyperbolic problems on a cylindrical domain. Conference Publications, 2007, 2007 (Special) : 160169. doi: 10.3934/proc.2007.2007.160 
[10] 
M. Eller. On boundary regularity of solutions to Maxwell's equations with a homogeneous conservative boundary condition. Discrete and Continuous Dynamical Systems  S, 2009, 2 (3) : 473481. doi: 10.3934/dcdss.2009.2.473 
[11] 
Michel Chipot, Karen Yeressian. On the asymptotic behavior of variational inequalities set in cylinders. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 48754890. doi: 10.3934/dcds.2013.33.4875 
[12] 
Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 545565. doi: 10.3934/dcds.2009.25.545 
[13] 
Shijin Deng, Linglong Du, ShihHsien Yu. Nonlinear stability of Broadwell model with Maxwell diffuse boundary condition. Kinetic and Related Models, 2013, 6 (4) : 865882. doi: 10.3934/krm.2013.6.865 
[14] 
Abdessatar Khelifi, Siwar Saidani. Asymptotic behavior of eigenvalues of the Maxwell system in the presence of small changes in the interface of an inclusion. Communications on Pure and Applied Analysis, , () : . doi: 10.3934/cpaa.2022080 
[15] 
Khalid Latrach, Hatem Megdiche. Time asymptotic behaviour for Rotenberg's model with Maxwell boundary conditions. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 305321. doi: 10.3934/dcds.2011.29.305 
[16] 
Ivonne Rivas, Muhammad Usman, BingYu Zhang. Global wellposedness and asymptotic behavior of a class of initialboundaryvalue problem of the KortewegDe Vries equation on a finite domain. Mathematical Control and Related Fields, 2011, 1 (1) : 6181. doi: 10.3934/mcrf.2011.1.61 
[17] 
Xiaofei Cao, Guowei Dai. Stability analysis of a model on varying domain with the Robin boundary condition. Discrete and Continuous Dynamical Systems  S, 2017, 10 (5) : 935942. doi: 10.3934/dcdss.2017048 
[18] 
Ming Mei, Bruno Rubino, Rosella Sampalmieri. Asymptotic behavior of solutions to the bipolar hydrodynamic model of semiconductors in bounded domain. Kinetic and Related Models, 2012, 5 (3) : 537550. doi: 10.3934/krm.2012.5.537 
[19] 
Everaldo S. de Medeiros, Jianfu Yang. Asymptotic behavior of solutions to a perturbed pLaplacian problem with Neumann condition. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 595606. doi: 10.3934/dcds.2005.12.595 
[20] 
Li Wang, Yang Li, Liwei Zhang. A differential equation method for solving box constrained variational inequality problems. Journal of Industrial and Management Optimization, 2011, 7 (1) : 183198. doi: 10.3934/jimo.2011.7.183 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]