\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Asymptotic behavior of solutions to a coupled system of Maxwell's equations and a controlled differential inclusion

Abstract / Introduction Related Papers Cited by
  • The present article consists of two parts. In the first part we consider evolutionary variational inequalities with a nonlinearity which is described by a differential inclusion. Using the frequency-domain method we prove, under certain assumptions, the dissipativity of our variational inequality which is important for the asymptotic behavior of the system. In the second part a coupled system of Maxwell's equation and the heat equation is considered. For this system we introduce the notion of stability on a finite-time interval and present a theorem on this type of stability.
    Mathematics Subject Classification: Primary: 35B35, 35B40; Secondary: 35K15, 35L20, 80A20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Duvant and J.L. Lions, "Inequalities in Mechanics and Physics," Springer - Verlag, Berlin, 1976.

    [2]

    D. Kalinichenko, V. Reitmann and S. Skopinov, Stability and bifurcations in a finite time interval on variational inequalities, Differential Equations, 48, no. 13 (2012), 1-12.

    [3]

    Y. Kalinin, V. Reitmann and N. Yumaguzin, Asymptotic behavior of Maxwell's equation in one-space dimension with thermal effect, Discrete and Continuous Dynamical Systems - Supplement 2011, 2 (2011), 754-762.

    [4]

    A.L. Likhtarnikov and V.A. Yakubovich, The frequency theorem for equations of evolutionary type, Siberian Math. J., 17 (1976), 790-803.

    [5]

    R.V. Manoranjan, H.M. Yin and R. Showalter, On two-phase Stefan problem arising from a microwave heating process, Contin. and Discrete Dynamical Systems, Serie A, 15 (2006), 1155-1168.

    [6]

    A.N. Michel and D.W. Porter, Practical stability and finite-time stability of discontinuous systems, IEEE Trans. Circuit Theory, 19 (1972), 123-129.

    [7]

    A.A. Pankov, "Bounded and Almost Periodic Solutions of Nonlinear Differential Operator Equations," Naukova Dumka, Kiev, 1986 (in Russian).

    [8]

    H. Triebel, "Interpolation Theorie, Function Spaces, Differential Operators," Amsterdam, North-Holland, 1978.

    [9]

    L. Weiss and E.F. Infante, On the stability of systems defined over a finite time interval, Proc. Nat. Acad. Sci., U.S.A., 54 (1965), 44-48.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(94) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return