2013, 2013(special): 41-49. doi: 10.3934/proc.2013.2013.41

Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains

1. 

Dipartimento di Matematica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy, Italy

Received  September 2012 Revised  May 2013 Published  November 2013

We study a superlinear perturbed elliptic problem on $\mathbb R^N$ with rotational symmetry. Using variational and perturbative methods we find infinitely many radial solutions for any growth exponent $p$ of the nonlinearity greater than $2$ and less than $2^*$ if $N \geq 4$ and for any $p$ greater than $3$ and subcritical if $N =3$.
Citation: Sara Barile, Addolorata Salvatore. Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains. Conference Publications, 2013, 2013 (special) : 41-49. doi: 10.3934/proc.2013.2013.41
References:
[1]

A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in cri\-ti\-cal point theory and applications,, J. Funct. Anal., 14 (1973), 349.   Google Scholar

[2]

A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications,, Trans. Amer. Math. Soc., 267 (1981), 1.   Google Scholar

[3]

A. Bahri and P.L. Lions, Morse index of some mini-max critical points,, Comm. Pure Appl. Math., 41 (1988), 1027.   Google Scholar

[4]

H. Berestycki and P.L. Lions, Nonlinear scalar field equations, I and II,, Arch. Rat. Mech. Anal., 82 (1983), 313.   Google Scholar

[5]

F.A. Berezin and M.A. Shubin, The Schr\"odinger equation,, Mathematics and its Applications (Soviet Series) 66, (1991).   Google Scholar

[6]

P. Bolle, On the Bolza Problem,, J. Differential Equations, 152 (1999), 274.   Google Scholar

[7]

P. Bolle, N. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems,, Manuscripta Math., 101 (2000), 325.   Google Scholar

[8]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011).   Google Scholar

[9]

A.M. Candela, G. Palmieri and A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry,, Topol. Methods Nonlinear Anal., 27 (2006), 117.   Google Scholar

[10]

A.M. Candela and A. Salvatore, Multiplicity results of an elliptic equation with non-homogeneous boundary conditions,, Topol. Methods Nonlinear Anal., 11 (1998), 1.   Google Scholar

[11]

A.M. Candela, A. Salvatore and M. Squassina, Semilinear elliptic systems with lack of symmetry,, Dynam. Contin. Discrete Impuls. Systems Ser. A, 10 (2003), 181.   Google Scholar

[12]

M. Clapp, Y. Ding and S. Hern\`andez-Linares, Strongly indefinite functionals with perturbed symmetries and multiple solutions of non symmetric elliptic systems,, Electron. J. Differential Equations, 100 (2004), 1.   Google Scholar

[13]

S.I. Pohozaev, On the global fibering method in nonlinear variational problems,, Proc. Steklov Inst. Math., 219 (1997), 281.   Google Scholar

[14]

P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Regional Conference Series in Mathematics, 65 (1986).   Google Scholar

[15]

P.H. Rabinowitz, Multiple critical points of perturbed symmetric functionals,, Trans. Amer. Math. Soc., 272 (1982), 753.   Google Scholar

[16]

A. Salvatore, Multiple radial solutions for a superlinear elliptic problem in $\mathbb R^N$,, Dynam. Systems and Applications, 4 (2004), 472.   Google Scholar

[17]

W.A. Strauss, Existence of solitary waves in higher dimensions,, Commun. Math. Phys., 55 (1977), 149.   Google Scholar

[18]

M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems,, Manuscripta Math., 32 (1980), 335.   Google Scholar

[19]

K. Tanaka, Morse indices at critical points related to the Symmetric Mountain Pass Theorem and applications,, Comm. Partial Differential Equations, 14 (1989), 99.   Google Scholar

show all references

References:
[1]

A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in cri\-ti\-cal point theory and applications,, J. Funct. Anal., 14 (1973), 349.   Google Scholar

[2]

A. Bahri and H. Berestycki, A perturbation method in critical point theory and applications,, Trans. Amer. Math. Soc., 267 (1981), 1.   Google Scholar

[3]

A. Bahri and P.L. Lions, Morse index of some mini-max critical points,, Comm. Pure Appl. Math., 41 (1988), 1027.   Google Scholar

[4]

H. Berestycki and P.L. Lions, Nonlinear scalar field equations, I and II,, Arch. Rat. Mech. Anal., 82 (1983), 313.   Google Scholar

[5]

F.A. Berezin and M.A. Shubin, The Schr\"odinger equation,, Mathematics and its Applications (Soviet Series) 66, (1991).   Google Scholar

[6]

P. Bolle, On the Bolza Problem,, J. Differential Equations, 152 (1999), 274.   Google Scholar

[7]

P. Bolle, N. Ghoussoub and H. Tehrani, The multiplicity of solutions in non-homogeneous boundary value problems,, Manuscripta Math., 101 (2000), 325.   Google Scholar

[8]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2011).   Google Scholar

[9]

A.M. Candela, G. Palmieri and A. Salvatore, Radial solutions of semilinear elliptic equations with broken symmetry,, Topol. Methods Nonlinear Anal., 27 (2006), 117.   Google Scholar

[10]

A.M. Candela and A. Salvatore, Multiplicity results of an elliptic equation with non-homogeneous boundary conditions,, Topol. Methods Nonlinear Anal., 11 (1998), 1.   Google Scholar

[11]

A.M. Candela, A. Salvatore and M. Squassina, Semilinear elliptic systems with lack of symmetry,, Dynam. Contin. Discrete Impuls. Systems Ser. A, 10 (2003), 181.   Google Scholar

[12]

M. Clapp, Y. Ding and S. Hern\`andez-Linares, Strongly indefinite functionals with perturbed symmetries and multiple solutions of non symmetric elliptic systems,, Electron. J. Differential Equations, 100 (2004), 1.   Google Scholar

[13]

S.I. Pohozaev, On the global fibering method in nonlinear variational problems,, Proc. Steklov Inst. Math., 219 (1997), 281.   Google Scholar

[14]

P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations,, CBMS Regional Conference Series in Mathematics, 65 (1986).   Google Scholar

[15]

P.H. Rabinowitz, Multiple critical points of perturbed symmetric functionals,, Trans. Amer. Math. Soc., 272 (1982), 753.   Google Scholar

[16]

A. Salvatore, Multiple radial solutions for a superlinear elliptic problem in $\mathbb R^N$,, Dynam. Systems and Applications, 4 (2004), 472.   Google Scholar

[17]

W.A. Strauss, Existence of solitary waves in higher dimensions,, Commun. Math. Phys., 55 (1977), 149.   Google Scholar

[18]

M. Struwe, Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems,, Manuscripta Math., 32 (1980), 335.   Google Scholar

[19]

K. Tanaka, Morse indices at critical points related to the Symmetric Mountain Pass Theorem and applications,, Comm. Partial Differential Equations, 14 (1989), 99.   Google Scholar

[1]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[2]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020045

[3]

Luca Rossi. Non-existence of positive solutions of fully nonlinear elliptic equations in unbounded domains. Communications on Pure & Applied Analysis, 2008, 7 (1) : 125-141. doi: 10.3934/cpaa.2008.7.125

[4]

Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1121-1134. doi: 10.3934/cpaa.2017054

[5]

João Marcos do Ó, Sebastián Lorca, Justino Sánchez, Pedro Ubilla. Positive radial solutions for some quasilinear elliptic systems in exterior domains. Communications on Pure & Applied Analysis, 2006, 5 (3) : 571-581. doi: 10.3934/cpaa.2006.5.571

[6]

Paulo Cesar Carrião, Olimpio Hiroshi Miyagaki. On a class of variational systems in unbounded domains. Conference Publications, 2001, 2001 (Special) : 74-79. doi: 10.3934/proc.2001.2001.74

[7]

Orlando Lopes. Uniqueness and radial symmetry of minimizers for a nonlocal variational problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2265-2282. doi: 10.3934/cpaa.2019102

[8]

Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886

[9]

Jun Bao, Lihe Wang, Chunqin Zhou. Positive solutions to elliptic equations in unbounded cylinder. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1389-1400. doi: 10.3934/dcdsb.2016001

[10]

Zhuoran Du. Some properties of positive radial solutions for some semilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 943-953. doi: 10.3934/cpaa.2010.9.943

[11]

Tomás Sanz-Perela. Regularity of radial stable solutions to semilinear elliptic equations for the fractional Laplacian. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2547-2575. doi: 10.3934/cpaa.2018121

[12]

Jiabao Su, Rushun Tian. Weighted Sobolev embeddings and radial solutions of inhomogeneous quasilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 885-904. doi: 10.3934/cpaa.2010.9.885

[13]

Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$-Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 447-479. doi: 10.3934/dcds.2006.15.447

[14]

Soohyun Bae, Yūki Naito. Separation structure of radial solutions for semilinear elliptic equations with exponential nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4537-4554. doi: 10.3934/dcds.2018198

[15]

Shoichi Hasegawa. Stability and separation property of radial solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4127-4136. doi: 10.3934/dcds.2019166

[16]

Marie-Françoise Bidaut-Véron, Marta Garcia-Huidobro, Laurent Véron. Radial solutions of scaling invariant nonlinear elliptic equations with mixed reaction terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 933-982. doi: 10.3934/dcds.2020067

[17]

Stefano Biagi, Enrico Valdinoci, Eugenio Vecchi. A symmetry result for elliptic systems in punctured domains. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2819-2833. doi: 10.3934/cpaa.2019126

[18]

Giuseppe Riey, Berardino Sciunzi. One dimensional symmetry of solutions to some anisotropic quasilinear elliptic equations in the plane. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1157-1166. doi: 10.3934/cpaa.2012.11.1157

[19]

Francesca De Marchis, Isabella Ianni. Blow up of solutions of semilinear heat equations in non radial domains of $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 891-907. doi: 10.3934/dcds.2015.35.891

[20]

Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 751-770. doi: 10.3934/dcds.2007.17.751

 Impact Factor: 

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]