2013, 2013(special): 437-446. doi: 10.3934/proc.2013.2013.437

Optimal control of a linear stochastic Schrödinger equation

1. 

Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences II, Institute of Mathematics, D - 06099 Halle (Saale), Germany

Received  August 2012 Published  November 2013

This paper concerns a linear controlled Schrödinger equation with additive noise and corresponding initial and Neumann boundary conditions. The existence and uniqueness of the variational solution of this Schrödinger problem and some of its properties will be discussed. Furthermore, a given objective functional shall be minimized by an optimal control. Though, instead of the control only the solution of the controlled Schrödinger problem appears explicitly in the objective functional. Based on the adjoint problem of the stochastic Schrödinger problem, a gradient formula is developed.
Citation: Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437
References:
[1]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions", Cambridge University Press, 1992.  Google Scholar

[2]

A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in $H^1$, Stochastic Analysis and Applications, 21 (2003), 97-126.  Google Scholar

[3]

M. H. Farag, A gradient-type optimization technique for the optimal control for Schrodinger equations, International Journal on Information Theories and Applications, 10 (2003), 414-422. Google Scholar

[4]

W. Grecksch and H. Lisei, Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method, Stochastic Analysis and Applications, 31 (2013), 314-335.  Google Scholar

[5]

W. Grecksch and H. Lisei, Stochastic nonlinear equations of Schrödinger type, Stochastic Analysis and Applications, 29 (2011), 631-653.  Google Scholar

[6]

D. Keller, "A Problem of Optimal Control for the Linear Stochastic Schrödinger Equation", Master's thesis, Martin-Luther University Halle-Wittenberg, 2011. Google Scholar

[7]

C. Prévôt and M. Röckner, "A Concise Course on Stochastic Partial Differential Equations", Springer-Verlag, Berlin Heidelberg, 2007.  Google Scholar

[8]

M. Subaşi, An estimate for the solution of a perturbed nonlinear quantum-mechanical problem, Chaos, Solitons and Fractals, 14 (2002), 397-402.  Google Scholar

[9]

M. Subaşi, An optimal control problem governed by the potential of a linear Schrodinger equation, Applied Mathematics and Computation, 131 (2002), 95-106.  Google Scholar

[10]

E. Zuazua, Remarks on the controllability of the Schrödinger equation, CRM Proceedings and Lecture Notes, 33 (2003), 193-211.  Google Scholar

show all references

References:
[1]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions", Cambridge University Press, 1992.  Google Scholar

[2]

A. de Bouard and A. Debussche, The stochastic nonlinear Schrödinger equation in $H^1$, Stochastic Analysis and Applications, 21 (2003), 97-126.  Google Scholar

[3]

M. H. Farag, A gradient-type optimization technique for the optimal control for Schrodinger equations, International Journal on Information Theories and Applications, 10 (2003), 414-422. Google Scholar

[4]

W. Grecksch and H. Lisei, Approximation of stochastic nonlinear equations of Schrödinger type by the splitting method, Stochastic Analysis and Applications, 31 (2013), 314-335.  Google Scholar

[5]

W. Grecksch and H. Lisei, Stochastic nonlinear equations of Schrödinger type, Stochastic Analysis and Applications, 29 (2011), 631-653.  Google Scholar

[6]

D. Keller, "A Problem of Optimal Control for the Linear Stochastic Schrödinger Equation", Master's thesis, Martin-Luther University Halle-Wittenberg, 2011. Google Scholar

[7]

C. Prévôt and M. Röckner, "A Concise Course on Stochastic Partial Differential Equations", Springer-Verlag, Berlin Heidelberg, 2007.  Google Scholar

[8]

M. Subaşi, An estimate for the solution of a perturbed nonlinear quantum-mechanical problem, Chaos, Solitons and Fractals, 14 (2002), 397-402.  Google Scholar

[9]

M. Subaşi, An optimal control problem governed by the potential of a linear Schrodinger equation, Applied Mathematics and Computation, 131 (2002), 95-106.  Google Scholar

[10]

E. Zuazua, Remarks on the controllability of the Schrödinger equation, CRM Proceedings and Lecture Notes, 33 (2003), 193-211.  Google Scholar

[1]

Gökçe Dİlek Küçük, Gabil Yagub, Ercan Çelİk. On the existence and uniqueness of the solution of an optimal control problem for Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 503-512. doi: 10.3934/dcdss.2019033

[2]

Kai Wang, Dun Zhao, Binhua Feng. Optimal nonlinearity control of Schrödinger equation. Evolution Equations & Control Theory, 2018, 7 (2) : 317-334. doi: 10.3934/eect.2018016

[3]

Peter I. Kogut. On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 2105-2133. doi: 10.3934/dcds.2014.34.2105

[4]

Camille Laurent. Internal control of the Schrödinger equation. Mathematical Control & Related Fields, 2014, 4 (2) : 161-186. doi: 10.3934/mcrf.2014.4.161

[5]

Mourad Bellassoued, Ibtissem Ben Aïcha, Zouhour Rezig. Stable determination of a vector field in a non-Self-Adjoint dynamical Schrödinger equation on Riemannian manifolds. Mathematical Control & Related Fields, 2021, 11 (2) : 403-431. doi: 10.3934/mcrf.2020042

[6]

Xiaobing Feng, Shu Ma. Stable numerical methods for a stochastic nonlinear Schrödinger equation with linear multiplicative noise. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021071

[7]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[8]

Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations & Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105

[9]

Xing Li, Chungen Shen, Lei-Hong Zhang. A projected preconditioned conjugate gradient method for the linear response eigenvalue problem. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 389-412. doi: 10.3934/naco.2018025

[10]

Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1845-1865. doi: 10.3934/dcdss.2020109

[11]

Binhua Feng, Xiangxia Yuan. On the Cauchy problem for the Schrödinger-Hartree equation. Evolution Equations & Control Theory, 2015, 4 (4) : 431-445. doi: 10.3934/eect.2015.4.431

[12]

Binhua Feng, Dun Zhao. On the Cauchy problem for the XFEL Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4171-4186. doi: 10.3934/dcdsb.2018131

[13]

Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control & Related Fields, 2016, 6 (4) : 595-628. doi: 10.3934/mcrf.2016017

[14]

Thierry Horsin, Peter I. Kogut. Optimal $L^2$-control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control & Related Fields, 2015, 5 (1) : 73-96. doi: 10.3934/mcrf.2015.5.73

[15]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[16]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[17]

Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020040

[18]

Xiaoshan Chen, Fahuai Yi. Free boundary problem of Barenblatt equation in stochastic control. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1421-1434. doi: 10.3934/dcdsb.2016003

[19]

Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal transport. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1533-1574. doi: 10.3934/dcds.2014.34.1533

[20]

Ying Hu, Shanjian Tang. Mixed deterministic and random optimal control of linear stochastic systems with quadratic costs. Probability, Uncertainty and Quantitative Risk, 2019, 4 (0) : 1-. doi: 10.1186/s41546-018-0035-x

 Impact Factor: 

Metrics

  • PDF downloads (136)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]