2013, 2013(special): 457-466. doi: 10.3934/proc.2013.2013.457

Analytical approach of one-dimensional solute transport through inhomogeneous semi-infinite porous domain for unsteady flow: Dispersion being proportional to square of velocity

1. 

Department of Mathematics and Astronomy, Lucknow University, Lucknow, 226007, Uttar Pradesh, India, India

Received  August 2012 Revised  December 2012 Published  November 2013

In this study, we present an analytical solution for solute transport in a semi-infinite inhomogeneous porous domain and a time-varying boundary condition. Dispersion is considered directly proportional to the square of velocity whereas the velocity is time and spatially dependent function. It is expressed in degenerate form. Initially the domain is solute free. The input condition is considered pulse type at the origin and flux type at the other end of the domain. Certain new independent variables are introduced through separate transformation to eliminate the variable coefficients of Advection Diffusion Equation (ADE) into constant coefficient. Laplace transform technique (LTT) is used to get the analytical solution of ADE concentration values are illustrated graphically.
Citation: Atul Kumar, R. R. Yadav. Analytical approach of one-dimensional solute transport through inhomogeneous semi-infinite porous domain for unsteady flow: Dispersion being proportional to square of velocity. Conference Publications, 2013, 2013 (special) : 457-466. doi: 10.3934/proc.2013.2013.457
References:
[1]

J. S. Chen, C. W. Liu, H. T. Hsu, C. M. Liao, A Laplace transformed power series solution for solute transport in a convergent flow field with scale-dependent dispersion,, Water Resources Research, 39(8) (2003).   Google Scholar

[2]

J. S. Chen, Two-dimensional power series solution for non-axisymmetrical transport in a radially convergent tracer test with scale-dependent dispersion,, Advances in Water Resources, 30(3) (2007), 430.   Google Scholar

[3]

J. S. Chen, C. F. Ni and C. P. Liang, Analytical power series solutions to the two-dimensional advection-dispersion equation with distance-dependent dispersivitie,, Hydrological Processe, 22(24 (2008), 46700.   Google Scholar

[4]

J. S. Chen and C. W. Liu, Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition,, Hydrol. Earth Syst. Sci. Discuss., 8 (2011), 4099.   Google Scholar

[5]

J. Crank, "The Mathematics of Diffusion,", Oxford University Press, ().   Google Scholar

[6]

E. H. Ebach and R. White, Mixing of fluids flowing through beds of packed solids,, Journal of American Institute of Chemical Engineering, 4 (1958), 161.   Google Scholar

[7]

K. S. M. Essa, S. M. Etman and M. Embaby, New analytical solution of the dispersion equation,, Atmospheric Research, 84 (2007), 337.   Google Scholar

[8]

A. Fedi, M. Massabo, O. Paladino and R. Cianci, A New Analytical Solution for the 2D Advection-Dispersion Equation in Semi-Infinite and Laterally Bounded Domain,, Applied Mathematical Sciences, 4(75) (2010), 3733.   Google Scholar

[9]

M. Th. van Genuchten, Non-equilibrium transport parameters from miscible displacement experiments,, U. S. Salinity Laboratory, 119 (1981).   Google Scholar

[10]

M. Th. van Genuchten and W. J. Alves, Analytical solutions of the one-dimensional convective-dispersive solute transport equation,, Technical Bulletin No 1661, (1661).   Google Scholar

[11]

J. S. P. Guerrero, L. C. G. Pimentel, T. H. Skaggs and M. Th. van Genuchten, Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique,, International Journal of Heat and Mass Transfer, 52 (2009), 3297.   Google Scholar

[12]

B. Hunt, Scale-dependent dispersion from a pit,, Journal of Hydrologic Engineering, 7(4) (2002), 168.   Google Scholar

[13]

D. K. Jaiswal, A. Kumar, N. Kumar and R. R. Yadav, Analytical solutions for temporally and spatially dependent solute dispersion of pulse type input concentration in one-dimensional semi-infinite media,, Journal of Hydro-environment Research, 2 (1963), 257.   Google Scholar

[14]

S. A. Kartha and R. Srivastava, Effect of immobile water content on contaminant transport in unsaturated zone,, Journal of Hydro-environment Research, 1 (2009), 206.   Google Scholar

[15]

I. Kocabas and M. R. Islam, Concentration and temperature transients in heterogeneous porous media. Part I: Linear transport,, Journal Petroleum Science and Engineering, 26 (): 221.   Google Scholar

[16]

I. Kocabas and M. R. Islam, Concentration and temperature transients in heterogeneous porous media. Part II: Radial transport,, Journal Petroleum Science and Engineering, 26 (): 211.   Google Scholar

[17]

A. Kumar, D. K. Jaiswal and N. Kumar, Analytical solutions of one-dimensional advection-diffusion equation with variable coefficients in a finite domain,, Journal of Earth System Sciemce, 118(5) (2009), 539.   Google Scholar

[18]

A. Kumar, D. K. Jaiswal and N. Kumar, Analytical solutions to one-dimensional advection- diffusion equation with variable coefficients in semi-infinite media,, Journal of Hydrology, 380 (2010), 330.   Google Scholar

[19]

D. Kuntz and P. Grathwohl, Comparision of steady-state and transient flow conditions on reactive transport of contaminants in the vadose soil zone,, Journal of Hydrology, 369 (2009), 225.   Google Scholar

[20]

F. T. Lindstrom and L. Boersma, Analytical solutions for convective-dispersive transport in confined aquifers with different initial and boundary conditions,, Water Resources Research, 25 (1989), 241.   Google Scholar

[21]

M. A. Marino, Flow against dispersion in non-adsorbing porous media,, Journal of Hydrology, 37 (1978), 149.   Google Scholar

[22]

D. M. Moreira, M. T. Vilhena, D. Buske and T. Tirabassi, The state-of-art of the GILTT method to simulate pollutant dispersion in the atmosphere,, Journal of Hydrology, 92 (2009), 1.   Google Scholar

[23]

A. Ogata, "Theory of dispersion in granular media,'', U. S. Geol. Sur. Prof. Paper 411I, (1970).   Google Scholar

[24]

A. Ogata and R. B. Bank, A solution of differential equation of longitudinal dispersion in porous media,, U. S. Geol. Surv. Prof. Pap. 411, (1961).   Google Scholar

[25]

J. P. Sauty, An analysis of hydrodispersive transfer in aquifer,, Water Resource Research, 16(1) (1980), 145.   Google Scholar

[26]

A. E. Scheidegger, "The Physics of Flow through Porous Media,", University of Toronto Press, (1957).   Google Scholar

[27]

M. K. Singh, P. Singh and V. P. Singh, Analytical Solution for Solute Transport along and against Time Dependent Source Concentration in Homogeneous Finite Aquifers,, Adv. Theor. Appl. Mech., 3(3) (2010), 99.   Google Scholar

[28]

P. Singh, One Dimensional Solute Transport Originating from a Exponentially Decay Type Point Source along Unsteady Flow through Heterogeneous Medium,, Journal of Water Resource and Protection, 3 (2011), 590.   Google Scholar

[29]

F. D. Smedt, Analytical solution and analysis of solute transport in rivers affected by diffusive transfer in the hyporheic zone,, Journal of Hydrology, 339 (2007), 29.   Google Scholar

[30]

N. Su, G. C. Sander, F. Liu, V. Anh and D. A. Barry, Similarity solutions for solute transport in fractal porous media using a time- and scale-dependent dispersivity,, Applied Mathematical Modeling, 29 (2005), 852.   Google Scholar

[31]

S. Wortmanna, M. T. Vilhenaa, D. M. Moreirab and D. Buske, A new analytical approach to simulate the pollutant dispersion in the PBL,, Atmospheric Environment, 39 (2005), 2171.   Google Scholar

show all references

References:
[1]

J. S. Chen, C. W. Liu, H. T. Hsu, C. M. Liao, A Laplace transformed power series solution for solute transport in a convergent flow field with scale-dependent dispersion,, Water Resources Research, 39(8) (2003).   Google Scholar

[2]

J. S. Chen, Two-dimensional power series solution for non-axisymmetrical transport in a radially convergent tracer test with scale-dependent dispersion,, Advances in Water Resources, 30(3) (2007), 430.   Google Scholar

[3]

J. S. Chen, C. F. Ni and C. P. Liang, Analytical power series solutions to the two-dimensional advection-dispersion equation with distance-dependent dispersivitie,, Hydrological Processe, 22(24 (2008), 46700.   Google Scholar

[4]

J. S. Chen and C. W. Liu, Generalized analytical solution for advection-dispersion equation in finite spatial domain with arbitrary time-dependent inlet boundary condition,, Hydrol. Earth Syst. Sci. Discuss., 8 (2011), 4099.   Google Scholar

[5]

J. Crank, "The Mathematics of Diffusion,", Oxford University Press, ().   Google Scholar

[6]

E. H. Ebach and R. White, Mixing of fluids flowing through beds of packed solids,, Journal of American Institute of Chemical Engineering, 4 (1958), 161.   Google Scholar

[7]

K. S. M. Essa, S. M. Etman and M. Embaby, New analytical solution of the dispersion equation,, Atmospheric Research, 84 (2007), 337.   Google Scholar

[8]

A. Fedi, M. Massabo, O. Paladino and R. Cianci, A New Analytical Solution for the 2D Advection-Dispersion Equation in Semi-Infinite and Laterally Bounded Domain,, Applied Mathematical Sciences, 4(75) (2010), 3733.   Google Scholar

[9]

M. Th. van Genuchten, Non-equilibrium transport parameters from miscible displacement experiments,, U. S. Salinity Laboratory, 119 (1981).   Google Scholar

[10]

M. Th. van Genuchten and W. J. Alves, Analytical solutions of the one-dimensional convective-dispersive solute transport equation,, Technical Bulletin No 1661, (1661).   Google Scholar

[11]

J. S. P. Guerrero, L. C. G. Pimentel, T. H. Skaggs and M. Th. van Genuchten, Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique,, International Journal of Heat and Mass Transfer, 52 (2009), 3297.   Google Scholar

[12]

B. Hunt, Scale-dependent dispersion from a pit,, Journal of Hydrologic Engineering, 7(4) (2002), 168.   Google Scholar

[13]

D. K. Jaiswal, A. Kumar, N. Kumar and R. R. Yadav, Analytical solutions for temporally and spatially dependent solute dispersion of pulse type input concentration in one-dimensional semi-infinite media,, Journal of Hydro-environment Research, 2 (1963), 257.   Google Scholar

[14]

S. A. Kartha and R. Srivastava, Effect of immobile water content on contaminant transport in unsaturated zone,, Journal of Hydro-environment Research, 1 (2009), 206.   Google Scholar

[15]

I. Kocabas and M. R. Islam, Concentration and temperature transients in heterogeneous porous media. Part I: Linear transport,, Journal Petroleum Science and Engineering, 26 (): 221.   Google Scholar

[16]

I. Kocabas and M. R. Islam, Concentration and temperature transients in heterogeneous porous media. Part II: Radial transport,, Journal Petroleum Science and Engineering, 26 (): 211.   Google Scholar

[17]

A. Kumar, D. K. Jaiswal and N. Kumar, Analytical solutions of one-dimensional advection-diffusion equation with variable coefficients in a finite domain,, Journal of Earth System Sciemce, 118(5) (2009), 539.   Google Scholar

[18]

A. Kumar, D. K. Jaiswal and N. Kumar, Analytical solutions to one-dimensional advection- diffusion equation with variable coefficients in semi-infinite media,, Journal of Hydrology, 380 (2010), 330.   Google Scholar

[19]

D. Kuntz and P. Grathwohl, Comparision of steady-state and transient flow conditions on reactive transport of contaminants in the vadose soil zone,, Journal of Hydrology, 369 (2009), 225.   Google Scholar

[20]

F. T. Lindstrom and L. Boersma, Analytical solutions for convective-dispersive transport in confined aquifers with different initial and boundary conditions,, Water Resources Research, 25 (1989), 241.   Google Scholar

[21]

M. A. Marino, Flow against dispersion in non-adsorbing porous media,, Journal of Hydrology, 37 (1978), 149.   Google Scholar

[22]

D. M. Moreira, M. T. Vilhena, D. Buske and T. Tirabassi, The state-of-art of the GILTT method to simulate pollutant dispersion in the atmosphere,, Journal of Hydrology, 92 (2009), 1.   Google Scholar

[23]

A. Ogata, "Theory of dispersion in granular media,'', U. S. Geol. Sur. Prof. Paper 411I, (1970).   Google Scholar

[24]

A. Ogata and R. B. Bank, A solution of differential equation of longitudinal dispersion in porous media,, U. S. Geol. Surv. Prof. Pap. 411, (1961).   Google Scholar

[25]

J. P. Sauty, An analysis of hydrodispersive transfer in aquifer,, Water Resource Research, 16(1) (1980), 145.   Google Scholar

[26]

A. E. Scheidegger, "The Physics of Flow through Porous Media,", University of Toronto Press, (1957).   Google Scholar

[27]

M. K. Singh, P. Singh and V. P. Singh, Analytical Solution for Solute Transport along and against Time Dependent Source Concentration in Homogeneous Finite Aquifers,, Adv. Theor. Appl. Mech., 3(3) (2010), 99.   Google Scholar

[28]

P. Singh, One Dimensional Solute Transport Originating from a Exponentially Decay Type Point Source along Unsteady Flow through Heterogeneous Medium,, Journal of Water Resource and Protection, 3 (2011), 590.   Google Scholar

[29]

F. D. Smedt, Analytical solution and analysis of solute transport in rivers affected by diffusive transfer in the hyporheic zone,, Journal of Hydrology, 339 (2007), 29.   Google Scholar

[30]

N. Su, G. C. Sander, F. Liu, V. Anh and D. A. Barry, Similarity solutions for solute transport in fractal porous media using a time- and scale-dependent dispersivity,, Applied Mathematical Modeling, 29 (2005), 852.   Google Scholar

[31]

S. Wortmanna, M. T. Vilhenaa, D. M. Moreirab and D. Buske, A new analytical approach to simulate the pollutant dispersion in the PBL,, Atmospheric Environment, 39 (2005), 2171.   Google Scholar

[1]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[2]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[3]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[4]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[5]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[6]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[7]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[8]

Renhao Cui. Asymptotic profiles of the endemic equilibrium of a reaction-diffusion-advection SIS epidemic model with saturated incidence rate. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2997-3022. doi: 10.3934/dcdsb.2020217

[9]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021085

[10]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[11]

Mohamed Ouzahra. Approximate controllability of the semilinear reaction-diffusion equation governed by a multiplicative control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021081

[12]

Vo Anh Khoa, Thi Kim Thoa Thieu, Ekeoma Rowland Ijioma. On a pore-scale stationary diffusion equation: Scaling effects and correctors for the homogenization limit. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2451-2477. doi: 10.3934/dcdsb.2020190

[13]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[14]

Guillermo Reyes, Juan-Luis Vázquez. Long time behavior for the inhomogeneous PME in a medium with slowly decaying density. Communications on Pure & Applied Analysis, 2009, 8 (2) : 493-508. doi: 10.3934/cpaa.2009.8.493

[15]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[16]

Charlene Kalle, Niels Langeveld, Marta Maggioni, Sara Munday. Matching for a family of infinite measure continued fraction transformations. Discrete & Continuous Dynamical Systems, 2020, 40 (11) : 6309-6330. doi: 10.3934/dcds.2020281

[17]

Seung-Yeal Ha, Myeongju Kang, Bora Moon. Collective behaviors of a Winfree ensemble on an infinite cylinder. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2749-2779. doi: 10.3934/dcdsb.2020204

[18]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[19]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[20]

V. Vijayakumar, R. Udhayakumar, K. Kavitha. On the approximate controllability of neutral integro-differential inclusions of Sobolev-type with infinite delay. Evolution Equations & Control Theory, 2021, 10 (2) : 271-296. doi: 10.3934/eect.2020066

 Impact Factor: 

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]