• Previous Article
    Existence of sliding motions for nonlinear evolution equations in Banach spaces
  • PROC Home
  • This Issue
  • Next Article
    Analytical approach of one-dimensional solute transport through inhomogeneous semi-infinite porous domain for unsteady flow: Dispersion being proportional to square of velocity
2013, 2013(special): 467-476. doi: 10.3934/proc.2013.2013.467

Bifurcation structure of steady-states for bistable equations with nonlocal constraint

1. 

Department of Communication Engineering and Informatics, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585

2. 

Department of Applied Physics, University of Miyazaki, Miyazaki, 889-2192

Received  September 2012 Revised  April 2013 Published  November 2013

This paper studies the 1D Neumann problem of bistable equations with nonlocal constraint. We obtain the global bifurcation structure of solutions by a level set analysis for the associate integral mapping. This structure implies that solutions can form a saddle-node bifurcation curve connecting boundary-layer states with internal-layer states. Furthermore, we exhibit the applications of our result to a couple of shadow systems arising in surface chemistry and physiology.
Citation: Kousuke Kuto, Tohru Tsujikawa. Bifurcation structure of steady-states for bistable equations with nonlocal constraint. Conference Publications, 2013, 2013 (special) : 467-476. doi: 10.3934/proc.2013.2013.467
References:
[1]

M. Hildebrand, "Selbstorganisierte nanostrukturen in katakyschen oberflächenreaktionen,", D. dissertation, (1999).   Google Scholar

[2]

M. Hildebrand, M. Kuperman, H. Wio, A. S. Mikhailov and G. Ertl, Self-organized chemical nanoscale microreactors,, Phys. Rev. Lett., 83 (1999), 1475.   Google Scholar

[3]

K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model: I. Existence,, Discrete Continuous Dynam. Systems - B, 14 (2010), 1105.   Google Scholar

[4]

K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model: II. Shadow system,, Nonlinearity, 26 (2013), 1313.   Google Scholar

[5]

K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for generalized Allen-Cahn equations with nonlocal constraint,, preprint., ().   Google Scholar

[6]

Y. Mori, A. Jilkine and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system,, Biophys. J., 94 (2008), 3684.   Google Scholar

[7]

Y. Mori, A. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization,, SIAM J. Appl. Math., 71 (2011), 1401.   Google Scholar

[8]

R. Schaaf, "Global solution branches of two-point boundary value problems,", Lecture Notes in Mathematics, (1458).   Google Scholar

[9]

J. Shi, Semilinear Neumann boundary value problems on a rectangle,, Trans. Amer. Math. Soc., 354 (2002), 3117.   Google Scholar

[10]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions,, J. Differential Equations, 39 (1981), 269.   Google Scholar

show all references

References:
[1]

M. Hildebrand, "Selbstorganisierte nanostrukturen in katakyschen oberflächenreaktionen,", D. dissertation, (1999).   Google Scholar

[2]

M. Hildebrand, M. Kuperman, H. Wio, A. S. Mikhailov and G. Ertl, Self-organized chemical nanoscale microreactors,, Phys. Rev. Lett., 83 (1999), 1475.   Google Scholar

[3]

K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model: I. Existence,, Discrete Continuous Dynam. Systems - B, 14 (2010), 1105.   Google Scholar

[4]

K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model: II. Shadow system,, Nonlinearity, 26 (2013), 1313.   Google Scholar

[5]

K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for generalized Allen-Cahn equations with nonlocal constraint,, preprint., ().   Google Scholar

[6]

Y. Mori, A. Jilkine and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system,, Biophys. J., 94 (2008), 3684.   Google Scholar

[7]

Y. Mori, A. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization,, SIAM J. Appl. Math., 71 (2011), 1401.   Google Scholar

[8]

R. Schaaf, "Global solution branches of two-point boundary value problems,", Lecture Notes in Mathematics, (1458).   Google Scholar

[9]

J. Shi, Semilinear Neumann boundary value problems on a rectangle,, Trans. Amer. Math. Soc., 354 (2002), 3117.   Google Scholar

[10]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions,, J. Differential Equations, 39 (1981), 269.   Google Scholar

[1]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[2]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[3]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[4]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[5]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[6]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[7]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[8]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[9]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[10]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[11]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[12]

Hussein Fakih, Ragheb Mghames, Noura Nasreddine. On the Cahn-Hilliard equation with mass source for biological applications. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020277

[13]

Masaru Hamano, Satoshi Masaki. A sharp scattering threshold level for mass-subcritical nonlinear Schrödinger system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1415-1447. doi: 10.3934/dcds.2020323

[14]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[15]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[16]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[17]

Erica Ipocoana, Andrea Zafferi. Further regularity and uniqueness results for a non-isothermal Cahn-Hilliard equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020289

[18]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[19]

Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030

[20]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

 Impact Factor: 

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]