2013, 2013(special): 477-487. doi: 10.3934/proc.2013.2013.477

Existence of sliding motions for nonlinear evolution equations in Banach spaces

1. 

Free University of Bolzano/Bozen, Piazza Università 1, 39100 Bolzano, Italy

Received  September 2012 Revised  September 2013 Published  November 2013

In this paper the issue of existence of sliding motions for a class of control systems of parabolic type is considered. The operator satisfies standard hemicontinuity, monotonicity and coercivity assumptions; the control law is finite-dimensional and enters linearly in the equation. By using a Faedo-Galerkin approach, a family of finite-dimensional ODEs is constructed and an approximating sequence of sliding motions is obtained using classical variable structure control techniques. Previous results on the convergence of the approximations are extended, by taking into consideration more general growth assumptions on the feedbacks. A detailed description of the approach for semilinear partial differential equations with Neumann boundary control is discussed.
Citation: Laura Levaggi. Existence of sliding motions for nonlinear evolution equations in Banach spaces. Conference Publications, 2013, 2013 (special) : 477-487. doi: 10.3934/proc.2013.2013.477
References:
[1]

G. Bartolini and T. Zolezzi, Control of nonlinear variable structure systems,, J. Math. Anal. Appl., 118 (1986), 42.   Google Scholar

[2]

S. Drakunov and Ü. Özgüner, Generalized sliding modes for manifold control of distributed parameter systems,, in, 193 (1994), 109.   Google Scholar

[3]

S. V. Drakunov and V. I. Utkin, Sliding mode control in dynamic systems,, Internat. J. Control, 55 (1992), 1029.   Google Scholar

[4]

A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides,", Mathematics and its Applications (Soviet Series), (1988).   Google Scholar

[5]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,", Monographs and Studies in Mathematics, (1985).   Google Scholar

[6]

L. Levaggi, Infinite dimensional systems' sliding motions,}, Eur. J. Control, 8 (2002), 508.   Google Scholar

[7]

L. Levaggi, Sliding modes in Banach spaces,, Differ. Integral Equ., 15 (2002), 167.   Google Scholar

[8]

L. Levaggi, High-gain feedback and sliding modes in infinite dimensional systems,, Control Cybernet., 33 (2004), 33.   Google Scholar

[9]

L. Levaggi, Variable structure control for parabolic evolution equations,, in, (2005), 1234.   Google Scholar

[10]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires,", (French) Dunod; Gauthier-Villars, (1969).   Google Scholar

[11]

J. L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, (1971).   Google Scholar

[12]

Y. Orlov, Discontinuous unit feedback control of uncertain infinite-dimensional systems,, IEEE Trans. Automat. Control, 45 (2000), 834.   Google Scholar

[13]

Y. Orlov and D. Dochain, Discontinuous feedback stabilization of minimum-phase semilinear infinite-dimensional systems with application to chemical tubular reactor,, IEEE Trans. Automat. Control, 47 (2002), 1293.   Google Scholar

[14]

Y. Orlov, Y. Lou and Panagiotis D. Christofides, Robust stabilization of infinite-dimensional systems using sliding-mode output feedback control,, Internat. J. Control, 77 (2004), 1115.   Google Scholar

[15]

Y. Orlov, A. Pisano and E. Usai, Continuous state-feedback tracking of an uncertain heat diffusion process,, Systems Control Lett., 59 (2010), 754.   Google Scholar

[16]

Y. Orlov and V. Utkin, Use of sliding modes in distributed system control problems,, Automat. Remote Control, 43 (1982), 1127.   Google Scholar

[17]

Y. Orlov and V. Utkin, Sliding mode control in indefinite-dimensional systems,, Automatica J. IFAC, 23 (1987), 753.   Google Scholar

[18]

Y. Orlov and V. Utkin, Unit sliding mode control in infinite-dimensional systems,, Adaptive learning and control using sliding modes. Appl. Math. Comput. Sci., 8 (1998), 7.   Google Scholar

[19]

A. Pisano, Y. Orlov and E. Usai, Tracking control of the uncertain heat and wave equation via power-fractional and sliding-mode techniques,, SIAM J. Control Optim., 49 (2011), 363.   Google Scholar

[20]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", Mathematical Surveys and Monographs, (1997).   Google Scholar

[21]

V. Utkin, "Sliding Modes in Control and Optimization,", Communications and Control Engineering Series, (1992).   Google Scholar

[22]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. II/A,", Linear monotone operators. Translated from the German by the author and Leo F. Boron. Springer-Verlag, (1990).   Google Scholar

[23]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. II/B,", Nonlinear monotone operators. Translated from the German by the author and Leo F. Boron. Springer-Verlag, (1990).   Google Scholar

[24]

T. Zolezzi, Variable structure control of semilinear evolution equations,, in, (1989), 997.   Google Scholar

show all references

References:
[1]

G. Bartolini and T. Zolezzi, Control of nonlinear variable structure systems,, J. Math. Anal. Appl., 118 (1986), 42.   Google Scholar

[2]

S. Drakunov and Ü. Özgüner, Generalized sliding modes for manifold control of distributed parameter systems,, in, 193 (1994), 109.   Google Scholar

[3]

S. V. Drakunov and V. I. Utkin, Sliding mode control in dynamic systems,, Internat. J. Control, 55 (1992), 1029.   Google Scholar

[4]

A. F. Filippov, "Differential Equations with Discontinuous Righthand Sides,", Mathematics and its Applications (Soviet Series), (1988).   Google Scholar

[5]

P. Grisvard, "Elliptic Problems in Nonsmooth Domains,", Monographs and Studies in Mathematics, (1985).   Google Scholar

[6]

L. Levaggi, Infinite dimensional systems' sliding motions,}, Eur. J. Control, 8 (2002), 508.   Google Scholar

[7]

L. Levaggi, Sliding modes in Banach spaces,, Differ. Integral Equ., 15 (2002), 167.   Google Scholar

[8]

L. Levaggi, High-gain feedback and sliding modes in infinite dimensional systems,, Control Cybernet., 33 (2004), 33.   Google Scholar

[9]

L. Levaggi, Variable structure control for parabolic evolution equations,, in, (2005), 1234.   Google Scholar

[10]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires,", (French) Dunod; Gauthier-Villars, (1969).   Google Scholar

[11]

J. L. Lions, "Optimal Control of Systems Governed by Partial Differential Equations,", Translated from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, (1971).   Google Scholar

[12]

Y. Orlov, Discontinuous unit feedback control of uncertain infinite-dimensional systems,, IEEE Trans. Automat. Control, 45 (2000), 834.   Google Scholar

[13]

Y. Orlov and D. Dochain, Discontinuous feedback stabilization of minimum-phase semilinear infinite-dimensional systems with application to chemical tubular reactor,, IEEE Trans. Automat. Control, 47 (2002), 1293.   Google Scholar

[14]

Y. Orlov, Y. Lou and Panagiotis D. Christofides, Robust stabilization of infinite-dimensional systems using sliding-mode output feedback control,, Internat. J. Control, 77 (2004), 1115.   Google Scholar

[15]

Y. Orlov, A. Pisano and E. Usai, Continuous state-feedback tracking of an uncertain heat diffusion process,, Systems Control Lett., 59 (2010), 754.   Google Scholar

[16]

Y. Orlov and V. Utkin, Use of sliding modes in distributed system control problems,, Automat. Remote Control, 43 (1982), 1127.   Google Scholar

[17]

Y. Orlov and V. Utkin, Sliding mode control in indefinite-dimensional systems,, Automatica J. IFAC, 23 (1987), 753.   Google Scholar

[18]

Y. Orlov and V. Utkin, Unit sliding mode control in infinite-dimensional systems,, Adaptive learning and control using sliding modes. Appl. Math. Comput. Sci., 8 (1998), 7.   Google Scholar

[19]

A. Pisano, Y. Orlov and E. Usai, Tracking control of the uncertain heat and wave equation via power-fractional and sliding-mode techniques,, SIAM J. Control Optim., 49 (2011), 363.   Google Scholar

[20]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", Mathematical Surveys and Monographs, (1997).   Google Scholar

[21]

V. Utkin, "Sliding Modes in Control and Optimization,", Communications and Control Engineering Series, (1992).   Google Scholar

[22]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. II/A,", Linear monotone operators. Translated from the German by the author and Leo F. Boron. Springer-Verlag, (1990).   Google Scholar

[23]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. II/B,", Nonlinear monotone operators. Translated from the German by the author and Leo F. Boron. Springer-Verlag, (1990).   Google Scholar

[24]

T. Zolezzi, Variable structure control of semilinear evolution equations,, in, (1989), 997.   Google Scholar

[1]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[2]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[3]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[4]

Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521

[5]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[6]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[7]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[8]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[9]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[10]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[11]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[12]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[13]

Boris Kramer, John R. Singler. A POD projection method for large-scale algebraic Riccati equations. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 413-435. doi: 10.3934/naco.2016018

[14]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[15]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[17]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[18]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[19]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[20]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

 Impact Factor: 

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]