
Previous Article
A discontinuous Galerkin leastsquares finite element method for solving Fisher's equation
 PROC Home
 This Issue

Next Article
Bifurcation structure of steadystates for bistable equations with nonlocal constraint
Existence of sliding motions for nonlinear evolution equations in Banach spaces
1.  Free University of Bolzano/Bozen, Piazza Università 1, 39100 Bolzano, Italy 
References:
show all references
References:
[1] 
CătălinGeorge Lefter, ElenaAlexandra Melnig. Feedback stabilization with one simultaneous control for systems of parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 777787. doi: 10.3934/mcrf.2018034 
[2] 
Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems  B, 2019, 24 (8) : 40994116. doi: 10.3934/dcdsb.2019052 
[3] 
Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reducedorder GPIO. Discrete and Continuous Dynamical Systems  S, 2021, 14 (4) : 14471464. doi: 10.3934/dcdss.2020375 
[4] 
Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete and Continuous Dynamical Systems  S, 2018, 11 (6) : 11031119. doi: 10.3934/dcdss.2018063 
[5] 
Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial and Management Optimization, 2014, 10 (1) : 275309. doi: 10.3934/jimo.2014.10.275 
[6] 
Elena Braverman, Alexandra Rodkina. Stabilization of difference equations with noisy proportional feedback control. Discrete and Continuous Dynamical Systems  B, 2017, 22 (6) : 20672088. doi: 10.3934/dcdsb.2017085 
[7] 
Cecilia Cavaterra, Denis Enăchescu, Gabriela Marinoschi. Sliding mode control of the Hodgkin–Huxley mathematical model. Evolution Equations and Control Theory, 2019, 8 (4) : 883902. doi: 10.3934/eect.2019043 
[8] 
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems and Imaging, 2016, 10 (4) : 869898. doi: 10.3934/ipi.2016025 
[9] 
V. Rehbock, K.L. Teo, L.S. Jennings. Suboptimal feedback control for a class of nonlinear systems using spline interpolation. Discrete and Continuous Dynamical Systems, 1995, 1 (2) : 223236. doi: 10.3934/dcds.1995.1.223 
[10] 
H. T. Banks, R.C. Smith. Feedback control of noise in a 2D nonlinear structural acoustics model. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 119149. doi: 10.3934/dcds.1995.1.119 
[11] 
Eduardo Casas, Konstantinos Chrysafinos. Analysis and optimal control of some quasilinear parabolic equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 607623. doi: 10.3934/mcrf.2018025 
[12] 
Fulvia Confortola, Elisa Mastrogiacomo. Feedback optimal control for stochastic Volterra equations with completely monotone kernels. Mathematical Control and Related Fields, 2015, 5 (2) : 191235. doi: 10.3934/mcrf.2015.5.191 
[13] 
Norbert Koksch, Stefan Siegmund. Feedback control via inertial manifolds for nonautonomous evolution equations. Communications on Pure and Applied Analysis, 2011, 10 (3) : 917936. doi: 10.3934/cpaa.2011.10.917 
[14] 
Konstantinos Chrysafinos, Efthimios N. Karatzas. Symmetric error estimates for discontinuous Galerkin approximations for an optimal control problem associated to semilinear parabolic PDE's. Discrete and Continuous Dynamical Systems  B, 2012, 17 (5) : 14731506. doi: 10.3934/dcdsb.2012.17.1473 
[15] 
Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Wellposedness and convergence of the method of lines. Inverse Problems and Imaging, 2013, 7 (2) : 307340. doi: 10.3934/ipi.2013.7.307 
[16] 
Sandra Lucente. Global existence for equivalent nonlinear special scale invariant damped wave equations. Discrete and Continuous Dynamical Systems  S, 2021 doi: 10.3934/dcdss.2021159 
[17] 
Heinz Schättler, Urszula Ledzewicz. Perturbation feedback control: A geometric interpretation. Numerical Algebra, Control and Optimization, 2012, 2 (3) : 631654. doi: 10.3934/naco.2012.2.631 
[18] 
Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. Impulsive control of a symmetric ball rolling without sliding or spinning. Journal of Geometric Mechanics, 2010, 2 (4) : 321342. doi: 10.3934/jgm.2010.2.321 
[19] 
Shu Zhang, Yuan Yuan. The Filippov equilibrium and sliding motion in an internet congestion control model. Discrete and Continuous Dynamical Systems  B, 2017, 22 (3) : 11891206. doi: 10.3934/dcdsb.2017058 
[20] 
J.P. Raymond. Nonlinear boundary control of semilinear parabolic problems with pointwise state constraints. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 341370. doi: 10.3934/dcds.1997.3.341 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]