2013, 2013(special): 489-497. doi: 10.3934/proc.2013.2013.489

A discontinuous Galerkin least-squares finite element method for solving Fisher's equation

1. 

Department of Engineering, Mathematics, and Physics, Texas A&M International University, Laredo, TX 78041

2. 

Department of Mathematics, The University of Southern Mississippi, Hattiesburg, MS 39406

Received  September 2012 Revised  January 2013 Published  November 2013

In the present study, a discontinuous Galerkin least-squares finite element algorithm is developed to solve Fisher's equation. The present method is effective and can be successfully applied to problems with strong reaction, to which obtaining stable and accurate numerical traveling wave solutions is challenging. Numerical results are given to demonstrate the convergence rates of the method and the performance of the algorithm in long-time integrations.
Citation: Runchang Lin, Huiqing Zhu. A discontinuous Galerkin least-squares finite element method for solving Fisher's equation. Conference Publications, 2013, 2013 (special) : 489-497. doi: 10.3934/proc.2013.2013.489
References:
[1]

M.J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher's equation for a special wave speed,, Bull. Math. Biol., 41 (1979), 835.   Google Scholar

[2]

K. Al-Khaled, Numerical study of Fishers reaction-diffusion equation by the sinc collocation method,, J. Comput. Appl. Math., 137 (2001), 245.   Google Scholar

[3]

J. Canosa, On a nonlinear diffusion equation describing population growth,, IBM J. Res. Develop., 17 (1973), 307.   Google Scholar

[4]

G.F. Carey and Y. Shen, Least-squares finite element approximation of Fishers reactiondiffusion equation,, Numer. Methods Partial Differential Equations, 11 (1995), 175.   Google Scholar

[5]

I. Daǧ, A. Şahin, and A. Korkmaz, Numerical investigation of the solution of Fisher's equation via the B-spline Galerkin method,, Numer. Methods Partial Differential Equations 26 (2010), 26 (2010), 1483.   Google Scholar

[6]

R.A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355.   Google Scholar

[7]

J. Gazdag and J. Canosa, Numerical solution of Fisher's equation,, J. Appl. Probab., 11 (1974), 445.   Google Scholar

[8]

B.Y. Guo and Z.X. Chen, Analytic solutions of the Fisher equation,, J. Phys. A, 24 (1991), 645.   Google Scholar

[9]

P.S. Hagan, Traveling wave and multiple traveling wave solutions of parabolic equations,, SIAM J. Math. Anal. 13 (1982), 13 (1982), 717.   Google Scholar

[10]

T. Hagstrom and H.B. Keller, The numerical calculation of traveling wave solutions of nonlinear parabolic equations,, SIAM J. Sci. Statist. Comput., 7 (1986), 978.   Google Scholar

[11]

A. Kolmogorov, I. Petrovshy, and N. Piscounoff, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bull. Univ. Etat Moscou Ser. Int. Sect. A Math. et Mecan., 1 (1937), 1.   Google Scholar

[12]

D.A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type,, SIAM J. Appl. Math. 34 (1978), 34 (1978), 93.   Google Scholar

[13]

S. Li, L. Petzold, and Y. Ren, Stability of moving mesh systems of partial differential equations,, SIAM J. Sci. Comput., 20 (1998), 719.   Google Scholar

[14]

R. Lin, Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions,, SIAM J. Numer. Anal. 47 (2008/09), 47 (): 89.   Google Scholar

[15]

R. Lin, Discontinuous Galerkin least-squares finite element methods for singularly perturbed reaction-diffusion problems with discontinuous coefficients and boundary singularities,, Numer. Math. 112 (2009), 112 (2009), 295.   Google Scholar

[16]

J.D. Logan, "An introduction to nonlinear partial differential equations,'', second edition, (2008).   Google Scholar

[17]

R.E. Mickens, A best finite-difference scheme for the Fisher equation,, Numer. Methods Partial Differential Equations 10 (1994), 10 (1994), 581.   Google Scholar

[18]

J.D. Murray, "Mathematical biology,'', Biomathematics, 19 (1989).   Google Scholar

[19]

D. Olmos and B.D. Shizgal, A pseudospectral method of solution of Fisher's equation,, J. Comput. Appl. Math., 193 (2006), 219.   Google Scholar

[20]

N. Parekh and S. Puri, A new numerical scheme for the Fisher equation,, J. Phys. A: Math. Gen., 23 (1990).   Google Scholar

[21]

Y. Qiu and D.M. Sloan, Numerical solution of Fisher's equation using a moving mesh method,, J. Comput. Phys., 146 (1998), 726.   Google Scholar

[22]

Rizwan-uddin, Comparison of the nodal integral method and nonstandard finite-difference schemes for the Fisher equation,, SIAM. J. Sci. Comput., 22 (2000), 1926.   Google Scholar

[23]

J. Roessler and H. Hüssner, Numerical solution of the $1+2$ dimensional Fisher's equation by finite elements and the Galerkin method,, Math. Comput. Modelling, 25 (1997), 57.   Google Scholar

[24]

S. Tang and R.O. Weber, Numerical study of Fisher's equation by a Petrov-Galerkin finite element method,, J. Austral. Math. Soc. Sci. B, 33 (1991), 27.   Google Scholar

[25]

V. Thomée, "Galerkin finite element methods for parabolic problems,'', second edition, (2006).   Google Scholar

[26]

S. Zhao and G.W. Wei, Comparison of the discrete singular convolution and three other numerical schemes for solving Fisher's equation,, SIAM J. Sci. Comput., 25 (2003), 127.   Google Scholar

show all references

References:
[1]

M.J. Ablowitz and A. Zeppetella, Explicit solutions of Fisher's equation for a special wave speed,, Bull. Math. Biol., 41 (1979), 835.   Google Scholar

[2]

K. Al-Khaled, Numerical study of Fishers reaction-diffusion equation by the sinc collocation method,, J. Comput. Appl. Math., 137 (2001), 245.   Google Scholar

[3]

J. Canosa, On a nonlinear diffusion equation describing population growth,, IBM J. Res. Develop., 17 (1973), 307.   Google Scholar

[4]

G.F. Carey and Y. Shen, Least-squares finite element approximation of Fishers reactiondiffusion equation,, Numer. Methods Partial Differential Equations, 11 (1995), 175.   Google Scholar

[5]

I. Daǧ, A. Şahin, and A. Korkmaz, Numerical investigation of the solution of Fisher's equation via the B-spline Galerkin method,, Numer. Methods Partial Differential Equations 26 (2010), 26 (2010), 1483.   Google Scholar

[6]

R.A. Fisher, The wave of advance of advantageous genes,, Ann. Eugenics, 7 (1937), 355.   Google Scholar

[7]

J. Gazdag and J. Canosa, Numerical solution of Fisher's equation,, J. Appl. Probab., 11 (1974), 445.   Google Scholar

[8]

B.Y. Guo and Z.X. Chen, Analytic solutions of the Fisher equation,, J. Phys. A, 24 (1991), 645.   Google Scholar

[9]

P.S. Hagan, Traveling wave and multiple traveling wave solutions of parabolic equations,, SIAM J. Math. Anal. 13 (1982), 13 (1982), 717.   Google Scholar

[10]

T. Hagstrom and H.B. Keller, The numerical calculation of traveling wave solutions of nonlinear parabolic equations,, SIAM J. Sci. Statist. Comput., 7 (1986), 978.   Google Scholar

[11]

A. Kolmogorov, I. Petrovshy, and N. Piscounoff, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bull. Univ. Etat Moscou Ser. Int. Sect. A Math. et Mecan., 1 (1937), 1.   Google Scholar

[12]

D.A. Larson, Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of Fisher type,, SIAM J. Appl. Math. 34 (1978), 34 (1978), 93.   Google Scholar

[13]

S. Li, L. Petzold, and Y. Ren, Stability of moving mesh systems of partial differential equations,, SIAM J. Sci. Comput., 20 (1998), 719.   Google Scholar

[14]

R. Lin, Discontinuous discretization for least-squares formulation of singularly perturbed reaction-diffusion problems in one and two dimensions,, SIAM J. Numer. Anal. 47 (2008/09), 47 (): 89.   Google Scholar

[15]

R. Lin, Discontinuous Galerkin least-squares finite element methods for singularly perturbed reaction-diffusion problems with discontinuous coefficients and boundary singularities,, Numer. Math. 112 (2009), 112 (2009), 295.   Google Scholar

[16]

J.D. Logan, "An introduction to nonlinear partial differential equations,'', second edition, (2008).   Google Scholar

[17]

R.E. Mickens, A best finite-difference scheme for the Fisher equation,, Numer. Methods Partial Differential Equations 10 (1994), 10 (1994), 581.   Google Scholar

[18]

J.D. Murray, "Mathematical biology,'', Biomathematics, 19 (1989).   Google Scholar

[19]

D. Olmos and B.D. Shizgal, A pseudospectral method of solution of Fisher's equation,, J. Comput. Appl. Math., 193 (2006), 219.   Google Scholar

[20]

N. Parekh and S. Puri, A new numerical scheme for the Fisher equation,, J. Phys. A: Math. Gen., 23 (1990).   Google Scholar

[21]

Y. Qiu and D.M. Sloan, Numerical solution of Fisher's equation using a moving mesh method,, J. Comput. Phys., 146 (1998), 726.   Google Scholar

[22]

Rizwan-uddin, Comparison of the nodal integral method and nonstandard finite-difference schemes for the Fisher equation,, SIAM. J. Sci. Comput., 22 (2000), 1926.   Google Scholar

[23]

J. Roessler and H. Hüssner, Numerical solution of the $1+2$ dimensional Fisher's equation by finite elements and the Galerkin method,, Math. Comput. Modelling, 25 (1997), 57.   Google Scholar

[24]

S. Tang and R.O. Weber, Numerical study of Fisher's equation by a Petrov-Galerkin finite element method,, J. Austral. Math. Soc. Sci. B, 33 (1991), 27.   Google Scholar

[25]

V. Thomée, "Galerkin finite element methods for parabolic problems,'', second edition, (2006).   Google Scholar

[26]

S. Zhao and G.W. Wei, Comparison of the discrete singular convolution and three other numerical schemes for solving Fisher's equation,, SIAM J. Sci. Comput., 25 (2003), 127.   Google Scholar

[1]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[4]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[8]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[9]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[10]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[11]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[12]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[13]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[14]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[15]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[16]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[17]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[18]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[19]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A socp relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[20]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

 Impact Factor: 

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]