
Previous Article
Radial solutions of semilinear elliptic equations with broken symmetry on unbounded domains
 PROC Home
 This Issue

Next Article
R&d dynamics
Infinitely many radial solutions of a nonhomogeneous $p$Laplacian problem
1.  Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, Via E. Orabona 4, 70125 Bari, Italy 
2.  Dipartimento di Matematica, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy 
References:
show all references
References:
[1] 
Bernd Kawohl, Jiří Horák. On the geometry of the pLaplacian operator. Discrete & Continuous Dynamical Systems  S, 2017, 10 (4) : 799813. doi: 10.3934/dcdss.2017040 
[2] 
Orlando Lopes. Uniqueness and radial symmetry of minimizers for a nonlocal variational problem. Communications on Pure & Applied Analysis, 2019, 18 (5) : 22652282. doi: 10.3934/cpaa.2019102 
[3] 
Shixiu Zheng, Zhilei Xu, Huan Yang, Jintao Song, Zhenkuan Pan. Comparisons of different methods for balanced data classification under the discrete nonlocal total variational framework. Mathematical Foundations of Computing, 2019, 2 (1) : 1128. doi: 10.3934/mfc.2019002 
[4] 
Lorenzo Brasco, Enea Parini, Marco Squassina. Stability of variational eigenvalues for the fractional $p$Laplacian. Discrete & Continuous Dynamical Systems  A, 2016, 36 (4) : 18131845. doi: 10.3934/dcds.2016.36.1813 
[5] 
Elisa Calzolari, Roberta Filippucci, Patrizia Pucci. Existence of radial solutions for the $p$Laplacian elliptic equations with weights. Discrete & Continuous Dynamical Systems  A, 2006, 15 (2) : 447479. doi: 10.3934/dcds.2006.15.447 
[6] 
Wen Tan. The regularity of pullback attractor for a nonautonomous pLaplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems  B, 2019, 24 (2) : 529546. doi: 10.3934/dcdsb.2018194 
[7] 
Antonio Greco, Vincenzino Mascia. Nonlocal sublinear problems: Existence, comparison, and radial symmetry. Discrete & Continuous Dynamical Systems  A, 2019, 39 (1) : 503519. doi: 10.3934/dcds.2019021 
[8] 
CÉSAR E. TORRES LEDESMA. Existence and symmetry result for fractional pLaplacian in $\mathbb{R}^{n}$. Communications on Pure & Applied Analysis, 2017, 16 (1) : 99114. doi: 10.3934/cpaa.2017004 
[9] 
Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional pLaplacian equations. Discrete & Continuous Dynamical Systems  A, 2019, 39 (3) : 15731583. doi: 10.3934/dcds.2019069 
[10] 
Marco Degiovanni, Michele Scaglia. A variational approach to semilinear elliptic equations with measure data. Discrete & Continuous Dynamical Systems  A, 2011, 31 (4) : 12331248. doi: 10.3934/dcds.2011.31.1233 
[11] 
Ran Zhuo, Wenxiong Chen, Xuewei Cui, Zixia Yuan. Symmetry and nonexistence of solutions for a nonlinear system involving the fractional Laplacian. Discrete & Continuous Dynamical Systems  A, 2016, 36 (2) : 11251141. doi: 10.3934/dcds.2016.36.1125 
[12] 
Tomás Caraballo, Marta HerreraCobos, Pedro MarínRubio. Global attractor for a nonlocal pLaplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems  B, 2017, 22 (5) : 18011816. doi: 10.3934/dcdsb.2017107 
[13] 
Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$biharmonic operator. Discrete & Continuous Dynamical Systems  S, 2012, 5 (4) : 741751. doi: 10.3934/dcdss.2012.5.741 
[14] 
Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems & Imaging, 2007, 1 (3) : 443456. doi: 10.3934/ipi.2007.1.443 
[15] 
Marc Briant. Perturbative theory for the Boltzmann equation in bounded domains with different boundary conditions. Kinetic & Related Models, 2017, 10 (2) : 329371. doi: 10.3934/krm.2017014 
[16] 
Yuxia Guo, Jianjun Nie. Infinitely many nonradial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems  A, 2016, 36 (12) : 68736898. doi: 10.3934/dcds.2016099 
[17] 
Zuodong Yang, Jing Mo, Subei Li. Positive solutions of $p$Laplacian equations with nonlinear boundary condition. Discrete & Continuous Dynamical Systems  B, 2011, 16 (2) : 623636. doi: 10.3934/dcdsb.2011.16.623 
[18] 
Petru Jebelean. Infinitely many solutions for ordinary $p$Laplacian systems with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2008, 7 (2) : 267275. doi: 10.3934/cpaa.2008.7.267 
[19] 
Agnid Banerjee, Nicola Garofalo. On the Dirichlet boundary value problem for the normalized $p$laplacian evolution. Communications on Pure & Applied Analysis, 2015, 14 (1) : 121. doi: 10.3934/cpaa.2015.14.1 
[20] 
Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional pLaplacian. Discrete & Continuous Dynamical Systems  A, 2019, 39 (3) : 14771495. doi: 10.3934/dcds.2019063 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]