Citation: |
[1] |
E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM Classics in Applied Mathematics 45, SIAM, Philadelphia, 2003. |
[2] |
F. Brezzi, J. Rappaz, P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of Nonsingular Solutions, Numer. Math., 36 (1980), 1-25. |
[3] |
F. Brezzi, J. Rappaz, P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part II: Limit Points, Numer. Math., 37 (1981), 1-28. |
[4] |
F. Brezzi, J. Rappaz, P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part III: Simple bifurcation points, Numer. Math., 38 (1981), 1-30. |
[5] |
J. C. Eilbeck, The pseudo-spectral method and path-following in Reaction- Diffusion bifurcation studies, SIAM J. of Sci. Stat. Comput., 7 (1986), 599-610. |
[6] |
H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Tata Insitute of Fundamental Research, Springer, Berlin, 1986. |
[7] |
J. López-Gómez, Estabilidad y Bifurcación Estática. Aplicaciones y Métodos Numéricos, Cuadernos de Matemática y Mecánica, Serie Cursos y Seminarios No 4, Santa Fe, 1988. |
[8] |
J. López-Gómez, Metasolutions: Malthus versus Verhulst in population dynamics. A dream of Volterra. Stationary partial differential equations, in "Handbook of Differential Equations: Stationary partial differential equations. Vol. II'' (eds. M. Chipot and P. Quittner), Elsevier, (2005), 211-309. |
[9] |
J. López-Gómez, M. Molina-Meyer and A. Tellini, Spiraling bifurcation diagrams in superlinear indefinite problems, Submitted. |
[10] |
J. López-Gómez, A. Tellini and F. Zanolin, High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems, Comm. Pure Appl. Anal., 13 (2014), 1-73. |