2013, 2013(special): 535-544. doi: 10.3934/proc.2013.2013.535

On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients

1. 

Dipartimento di Matematica e Informatica, Università di Cagliari, 09123

Received  September 2012 Revised  December 2012 Published  November 2013

This paper deals with the blow-up of the solutions to a class of nonlinear parabolic equations with Dirichlet boundary condition and time dependent coefficients. Under some conditions on the data and geometry of the spatial domain, explicit upper and lower bounds for the blow-up time are derived. Moreover, the influence of the data on the behaviour of the solution is investigated to obtain global existence.
Citation: Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535
References:
[1]

J.M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations,, Quart. J. Math. Oxford 28, 28 (1977), 473.   Google Scholar

[2]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t= \Delta u + u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo 13, 13 (1966), 109.   Google Scholar

[3]

H. Kielhöfer, Halbgruppen und semilineare Anfangs-randwert-probleme,, Manuscripta Math.12, 12 (1974), 121.   Google Scholar

[4]

H.A. Levine, The role of the critical exponents in blow-up theorems,, SIAM Review 32, 32 (1990), 262.   Google Scholar

[5]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Num. Funct. Anal. Optim. 32, 32 (2011).   Google Scholar

[6]

M. Marras, S.Vernier Piro, Blow-up phenomena in reaction-diffusion systems,, Discrete and Continuous Dynamical Systems 32, 32 (2012), 4001.   Google Scholar

[7]

M. Marras, S.Vernier Piro, Bounds for blow-up time in nonlinear parabolic system,, Discrete and Continuous Dynamical Systems, (2011), 1025.   Google Scholar

[8]

L.E. Payne, G.A. Philippin, Blow up phenomena in parabolic problems with time dependent coefficients under Dirichlet boundary conditions,, Proc. Amer. Math. Soc. 141, 141 (2013), 2309.   Google Scholar

[9]

L.E. Payne, G.A. Philippin, P.W. Schaefer, Bounds for blow-up time in nonlinear parabolic problems,, J.Math. Anal. Appl. 338 (2008), 338 (2008), 438.   Google Scholar

[10]

L.E. Payne, G.A. Philippin, P.W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems,, Nonlinear Analysis. 69 (2008), 69 (2008), 3495.   Google Scholar

[11]

L.E. Payne, G.A. Philippin, S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I,, Z. Angew. Math. Phys., 61 (2010), 971.   Google Scholar

[12]

L.E. Payne, G.A. Philippin, S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition II,, Nonlinear Analysis, 73 (2010), 971.   Google Scholar

[13]

L.E. Payne, P.W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet boundary conditions,, J. Math. Anal. Appl., 328 (2007), 1196.   Google Scholar

[14]

L.E. Payne, P.W. Schaefer, Blow-up phenomena for some nonlinear parabolic systems,, Int. J. of Pure and Applied Math., 42 (2008), 193.   Google Scholar

[15]

P. Quittner, P. Souplet, Superlinear parabolic problems. Blow-up, global existence and steady states,, Birkhäuser Advanced Texts, (2007).   Google Scholar

[16]

G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl., 110 (1976), 353.   Google Scholar

[17]

F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$,, Indiana Univ. Math. J. 29 (1980), 29 (1980), 79.   Google Scholar

[18]

F.B. Weissler, Existence and nonexistence of global solutions for a heat equation,, Israel J.Math. 38 (1981), 38 (1981), 1.   Google Scholar

show all references

References:
[1]

J.M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations,, Quart. J. Math. Oxford 28, 28 (1977), 473.   Google Scholar

[2]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t= \Delta u + u^{1+\alpha}$,, J. Fac. Sci. Univ. Tokyo 13, 13 (1966), 109.   Google Scholar

[3]

H. Kielhöfer, Halbgruppen und semilineare Anfangs-randwert-probleme,, Manuscripta Math.12, 12 (1974), 121.   Google Scholar

[4]

H.A. Levine, The role of the critical exponents in blow-up theorems,, SIAM Review 32, 32 (1990), 262.   Google Scholar

[5]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Num. Funct. Anal. Optim. 32, 32 (2011).   Google Scholar

[6]

M. Marras, S.Vernier Piro, Blow-up phenomena in reaction-diffusion systems,, Discrete and Continuous Dynamical Systems 32, 32 (2012), 4001.   Google Scholar

[7]

M. Marras, S.Vernier Piro, Bounds for blow-up time in nonlinear parabolic system,, Discrete and Continuous Dynamical Systems, (2011), 1025.   Google Scholar

[8]

L.E. Payne, G.A. Philippin, Blow up phenomena in parabolic problems with time dependent coefficients under Dirichlet boundary conditions,, Proc. Amer. Math. Soc. 141, 141 (2013), 2309.   Google Scholar

[9]

L.E. Payne, G.A. Philippin, P.W. Schaefer, Bounds for blow-up time in nonlinear parabolic problems,, J.Math. Anal. Appl. 338 (2008), 338 (2008), 438.   Google Scholar

[10]

L.E. Payne, G.A. Philippin, P.W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems,, Nonlinear Analysis. 69 (2008), 69 (2008), 3495.   Google Scholar

[11]

L.E. Payne, G.A. Philippin, S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I,, Z. Angew. Math. Phys., 61 (2010), 971.   Google Scholar

[12]

L.E. Payne, G.A. Philippin, S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition II,, Nonlinear Analysis, 73 (2010), 971.   Google Scholar

[13]

L.E. Payne, P.W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet boundary conditions,, J. Math. Anal. Appl., 328 (2007), 1196.   Google Scholar

[14]

L.E. Payne, P.W. Schaefer, Blow-up phenomena for some nonlinear parabolic systems,, Int. J. of Pure and Applied Math., 42 (2008), 193.   Google Scholar

[15]

P. Quittner, P. Souplet, Superlinear parabolic problems. Blow-up, global existence and steady states,, Birkhäuser Advanced Texts, (2007).   Google Scholar

[16]

G. Talenti, Best constant in Sobolev inequality,, Ann. Mat. Pura Appl., 110 (1976), 353.   Google Scholar

[17]

F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$,, Indiana Univ. Math. J. 29 (1980), 29 (1980), 79.   Google Scholar

[18]

F.B. Weissler, Existence and nonexistence of global solutions for a heat equation,, Israel J.Math. 38 (1981), 38 (1981), 1.   Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[4]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[5]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[6]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[7]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[8]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[9]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[10]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[11]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[12]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[13]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[14]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[17]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[18]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[19]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[20]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

 Impact Factor: 

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]