2013, 2013(special): 535-544. doi: 10.3934/proc.2013.2013.535

On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients

1. 

Dipartimento di Matematica e Informatica, Università di Cagliari, 09123

Received  September 2012 Revised  December 2012 Published  November 2013

This paper deals with the blow-up of the solutions to a class of nonlinear parabolic equations with Dirichlet boundary condition and time dependent coefficients. Under some conditions on the data and geometry of the spatial domain, explicit upper and lower bounds for the blow-up time are derived. Moreover, the influence of the data on the behaviour of the solution is investigated to obtain global existence.
Citation: Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535
References:
[1]

J.M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford 28, (1977), 473-486.

[2]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t= \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo 13, (1966), 109-124.

[3]

H. Kielhöfer, Halbgruppen und semilineare Anfangs-randwert-probleme, Manuscripta Math.12, (1974), 121-152.

[4]

H.A. Levine, The role of the critical exponents in blow-up theorems, SIAM Review 32, (1990), 262-288.

[5]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions, Num. Funct. Anal. Optim. 32, (2011), 453- 468.

[6]

M. Marras, S.Vernier Piro, Blow-up phenomena in reaction-diffusion systems, Discrete and Continuous Dynamical Systems 32, N. 11, (2012) 4001-4014.

[7]

M. Marras, S.Vernier Piro, Bounds for blow-up time in nonlinear parabolic system, Discrete and Continuous Dynamical Systems, Suppl. 2011 (2011) 1025-1031.

[8]

L.E. Payne, G.A. Philippin, Blow up phenomena in parabolic problems with time dependent coefficients under Dirichlet boundary conditions, Proc. Amer. Math. Soc. 141, N. 7 (2013) 2309-2318.

[9]

L.E. Payne, G.A. Philippin, P.W. Schaefer, Bounds for blow-up time in nonlinear parabolic problems, J.Math. Anal. Appl. 338 (2008), 438-447.

[10]

L.E. Payne, G.A. Philippin, P.W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Analysis. 69 (2008), 3495-3502.

[11]

L.E. Payne, G.A. Philippin, S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I, Z. Angew. Math. Phys., 61 (2010), 971-978.

[12]

L.E. Payne, G.A. Philippin, S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition II, Nonlinear Analysis, 73 (2010), 971-978.

[13]

L.E. Payne, P.W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet boundary conditions, J. Math. Anal. Appl., 328 (2007), 1196-1205.

[14]

L.E. Payne, P.W. Schaefer, Blow-up phenomena for some nonlinear parabolic systems, Int. J. of Pure and Applied Math., 42 (2008), 193-202.

[15]

P. Quittner, P. Souplet, Superlinear parabolic problems. Blow-up, global existence and steady states, Birkhäuser Advanced Texts, Basel, (2007).

[16]

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.

[17]

F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$, Indiana Univ. Math. J. 29 (1980), 79-102 .

[18]

F.B. Weissler, Existence and nonexistence of global solutions for a heat equation, Israel J.Math. 38 (1981), n.1-2, 29-40.

show all references

References:
[1]

J.M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford 28, (1977), 473-486.

[2]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t= \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo 13, (1966), 109-124.

[3]

H. Kielhöfer, Halbgruppen und semilineare Anfangs-randwert-probleme, Manuscripta Math.12, (1974), 121-152.

[4]

H.A. Levine, The role of the critical exponents in blow-up theorems, SIAM Review 32, (1990), 262-288.

[5]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions, Num. Funct. Anal. Optim. 32, (2011), 453- 468.

[6]

M. Marras, S.Vernier Piro, Blow-up phenomena in reaction-diffusion systems, Discrete and Continuous Dynamical Systems 32, N. 11, (2012) 4001-4014.

[7]

M. Marras, S.Vernier Piro, Bounds for blow-up time in nonlinear parabolic system, Discrete and Continuous Dynamical Systems, Suppl. 2011 (2011) 1025-1031.

[8]

L.E. Payne, G.A. Philippin, Blow up phenomena in parabolic problems with time dependent coefficients under Dirichlet boundary conditions, Proc. Amer. Math. Soc. 141, N. 7 (2013) 2309-2318.

[9]

L.E. Payne, G.A. Philippin, P.W. Schaefer, Bounds for blow-up time in nonlinear parabolic problems, J.Math. Anal. Appl. 338 (2008), 438-447.

[10]

L.E. Payne, G.A. Philippin, P.W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Analysis. 69 (2008), 3495-3502.

[11]

L.E. Payne, G.A. Philippin, S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition I, Z. Angew. Math. Phys., 61 (2010), 971-978.

[12]

L.E. Payne, G.A. Philippin, S. Vernier-Piro, Blow-up phenomena for a semilinear heat equation with nonlinear boundary condition II, Nonlinear Analysis, 73 (2010), 971-978.

[13]

L.E. Payne, P.W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet boundary conditions, J. Math. Anal. Appl., 328 (2007), 1196-1205.

[14]

L.E. Payne, P.W. Schaefer, Blow-up phenomena for some nonlinear parabolic systems, Int. J. of Pure and Applied Math., 42 (2008), 193-202.

[15]

P. Quittner, P. Souplet, Superlinear parabolic problems. Blow-up, global existence and steady states, Birkhäuser Advanced Texts, Basel, (2007).

[16]

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.

[17]

F.B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$, Indiana Univ. Math. J. 29 (1980), 79-102 .

[18]

F.B. Weissler, Existence and nonexistence of global solutions for a heat equation, Israel J.Math. 38 (1981), n.1-2, 29-40.

[1]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[2]

Julián López-Gómez, Pavol Quittner. Complete and energy blow-up in indefinite superlinear parabolic problems. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 169-186. doi: 10.3934/dcds.2006.14.169

[3]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[4]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[5]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[6]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[7]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[8]

Yūki Naito, Takasi Senba. Blow-up behavior of solutions to a parabolic-elliptic system on higher dimensional domains. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3691-3713. doi: 10.3934/dcds.2012.32.3691

[9]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[10]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[11]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[12]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[13]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013

[14]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[15]

Wenjun Liu, Jiangyong Yu, Gang Li. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4337-4366. doi: 10.3934/dcdss.2021121

[16]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[17]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[18]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[19]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[20]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

 Impact Factor: 

Metrics

  • PDF downloads (94)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]