• Previous Article
    Existence and multiplicity of solutions in fourth order BVPs with unbounded nonlinearities
  • PROC Home
  • This Issue
  • Next Article
    On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients
2013, 2013(special): 545-554. doi: 10.3934/proc.2013.2013.545

A note on optimal control problem for a hemivariational inequality modeling fluid flow

1. 

Jagiellonian University, Faculty of Mathematics and Computer Science, Institute of Computer Science, ul. Łojasiewicza 6, 30348 Krakow

Received  October 2012 Published  November 2013

We consider a class of distributed parameter optimal control problems for the boundary value problem for the stationary Navier--Stokes equation with a subdifferential boundary condition in a bounded domain. The weak formulation of the boundary value problem is a hemivariational inequality associated with a nonconvex nonsmooth locally Lipschitz superpotential. We establish the existence of solutions to the optimal control problem. We also address an open problem of potential identification in the hemivariational inequality.
Citation: Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545
References:
[1]

E. B. Bykhovski and N. V. Smirnov, On the orthogonal decomposition of the space of vector-valued square summable functions and the operators of vector analysis (in Russian),, Trudy Mat. Inst. im. V. A. Steklova AN SSSR 59 (1960), 59 (1960), 6.   Google Scholar

[2]

A. Yu. Chebotarev, Subdifferential boundary value problems for stationary Navier-Stokes equations,, Differensialnye Uravneniya [Differential Equations] 28 (1992), 28 (1992), 1443.   Google Scholar

[3]

A. Yu. Chebotarev, Stationary variational inequalities in the model of inhomogeneous incompressible fluids,, Sibirsk. Math. Zh. [Siberian Math. J.] 38 (1997), 38 (1997), 1184.   Google Scholar

[4]

F. H. Clarke, "Optimization and Nonsmooth Analysis",, Wiley, (1983).   Google Scholar

[5]

Z. Denkowski, S. Migórski and N.S. Papageorgiou, "An Introduction to Nonlinear Analysis: Theory",, Kluwer Academic/Plenum Publishers, (2003).   Google Scholar

[6]

Z. Denkowski, S. Migórski and N.S. Papageorgiou, "An Introduction to Nonlinear Analysis: Applications",, Kluwer Academic/Plenum Publishers, (2003).   Google Scholar

[7]

D. S. Konovalova, Subdifferential boundary value problems for evolution Navier-Stokes equations,, Differensialnye Uravneniya [Differential Equations] 36 (2000), 36 (2000), 792.   Google Scholar

[8]

S. Migórski, Evolution hemivariational inequalities in infinite dimension and their control,, Nonlinear Analysis Theory Methods and Applications 47 (2001), 47 (2001), 101.   Google Scholar

[9]

S. Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity,, Discrete Continuous Dynam. Syst. Ser. B 6 (2006), 6 (2006), 1339.   Google Scholar

[10]

S. Migórski, A. Ochal, Optimal control of parabolic hemivariational inequalities,, Journal of Global Optimization 17 (2000), 17 (2000), 285.   Google Scholar

[11]

S. Migórski and A. Ochal, Hemivariational inequalites for stationary Navier-Stokes equations,, J. Math. Anal. Appl. 306 (2005), 306 (2005), 197.   Google Scholar

[12]

S. Migórski and A. Ochal, Navier-Stokes models modeled by evolution hemivariational inequalities,, Discrete and Continuous Dynamical Systems (Suppl.) (2007) 731-740., (2007), 731.   Google Scholar

[13]

S. Migórski, A. Ochal and M. Sofonea, "Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems",, Advances in Mechanics and Mathematics 26, 26 (2013).   Google Scholar

[14]

Z. Naniewicz and P. D. Panagiotopoulos, "Mathematical Theory of Hemivariational Inequalities and Applications",, Marcel Dekker, (1995).   Google Scholar

[15]

P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering",, Springer-Verlag, (1993).   Google Scholar

[16]

R. Temam, "Navier-Stokes Equations",, North-Holland, (1979).   Google Scholar

[17]

E. Zeidler, "Nonlinear Functional Analysis and Applications II A/B",, Springer, (1990).   Google Scholar

show all references

References:
[1]

E. B. Bykhovski and N. V. Smirnov, On the orthogonal decomposition of the space of vector-valued square summable functions and the operators of vector analysis (in Russian),, Trudy Mat. Inst. im. V. A. Steklova AN SSSR 59 (1960), 59 (1960), 6.   Google Scholar

[2]

A. Yu. Chebotarev, Subdifferential boundary value problems for stationary Navier-Stokes equations,, Differensialnye Uravneniya [Differential Equations] 28 (1992), 28 (1992), 1443.   Google Scholar

[3]

A. Yu. Chebotarev, Stationary variational inequalities in the model of inhomogeneous incompressible fluids,, Sibirsk. Math. Zh. [Siberian Math. J.] 38 (1997), 38 (1997), 1184.   Google Scholar

[4]

F. H. Clarke, "Optimization and Nonsmooth Analysis",, Wiley, (1983).   Google Scholar

[5]

Z. Denkowski, S. Migórski and N.S. Papageorgiou, "An Introduction to Nonlinear Analysis: Theory",, Kluwer Academic/Plenum Publishers, (2003).   Google Scholar

[6]

Z. Denkowski, S. Migórski and N.S. Papageorgiou, "An Introduction to Nonlinear Analysis: Applications",, Kluwer Academic/Plenum Publishers, (2003).   Google Scholar

[7]

D. S. Konovalova, Subdifferential boundary value problems for evolution Navier-Stokes equations,, Differensialnye Uravneniya [Differential Equations] 36 (2000), 36 (2000), 792.   Google Scholar

[8]

S. Migórski, Evolution hemivariational inequalities in infinite dimension and their control,, Nonlinear Analysis Theory Methods and Applications 47 (2001), 47 (2001), 101.   Google Scholar

[9]

S. Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity,, Discrete Continuous Dynam. Syst. Ser. B 6 (2006), 6 (2006), 1339.   Google Scholar

[10]

S. Migórski, A. Ochal, Optimal control of parabolic hemivariational inequalities,, Journal of Global Optimization 17 (2000), 17 (2000), 285.   Google Scholar

[11]

S. Migórski and A. Ochal, Hemivariational inequalites for stationary Navier-Stokes equations,, J. Math. Anal. Appl. 306 (2005), 306 (2005), 197.   Google Scholar

[12]

S. Migórski and A. Ochal, Navier-Stokes models modeled by evolution hemivariational inequalities,, Discrete and Continuous Dynamical Systems (Suppl.) (2007) 731-740., (2007), 731.   Google Scholar

[13]

S. Migórski, A. Ochal and M. Sofonea, "Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems",, Advances in Mechanics and Mathematics 26, 26 (2013).   Google Scholar

[14]

Z. Naniewicz and P. D. Panagiotopoulos, "Mathematical Theory of Hemivariational Inequalities and Applications",, Marcel Dekker, (1995).   Google Scholar

[15]

P. D. Panagiotopoulos, "Hemivariational Inequalities, Applications in Mechanics and Engineering",, Springer-Verlag, (1993).   Google Scholar

[16]

R. Temam, "Navier-Stokes Equations",, North-Holland, (1979).   Google Scholar

[17]

E. Zeidler, "Nonlinear Functional Analysis and Applications II A/B",, Springer, (1990).   Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[4]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[5]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[6]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[7]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[8]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[9]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

[10]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[11]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[12]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[13]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[14]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[15]

Shuxing Chen, Jianzhong Min, Yongqian Zhang. Weak shock solution in supersonic flow past a wedge. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 115-132. doi: 10.3934/dcds.2009.23.115

[16]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[17]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[18]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[19]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[20]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

 Impact Factor: 

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]