[1]

A. Cabada, R. Pouso and F. Minhós, Extremal solutions to fourthorder functional boundary value problems including multipoint condition. Nonlinear Anal.: Real World Appl., 10 (2009) 21572170.

[2]

C. Fabry, J. Mawhin and M. N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bull. London Math. Soc., 18 (1986), 173180.

[3]

J. Fialho and F. Minhós, Existence and location results for hinged beams with unbounded nonlinearities, Nonlinear Anal., 71 (2009) e1519e1525.

[4]

J. Fialho, F. Minhós, On higher order fully periodic boundary value problems, J. Math. Anal. Appl., 395 (2012) 616625.

[5]

J. Graef, L. Kong and B. Yang, Existence of solutions for a higherorder multipoint boundary value problem, Result. Math., 53 (2009), 77101.

[6]

M.R. Grossinho, F.M. Minhós, A.I. Santos, olvability of some thirdorder boundary value problems with asymmetric unbounded linearities, Nonlinear Analysis, 62 (2005), 12351250.

[7]

M.R. Grossinho, F. Minhós and A. I. Santos, A note on a class of problems for a higher order fully nonlinear equation under one sided Nagumo type condition, Nonlinear Anal., 70 (2009) 40274038.

[8]

J. Mawhin, Topological degree methods in nonlinear boundary value problems, Regional Conference Series in Mathematics, 40, American Mathematical Society, Providence, Rhode Island, 1979.

[9]

F. Minhós, Existence, nonexistence and multiplicity results for some beam equations, Progress in Nonlinear Differential Equations and Their Applications, Vol. 75, 245255, Birkhäuser Verlag Basel (2007).

[10]

F. Minhós, On some third order nonlinear boundary value problems: existence, location and multiplicity results, J. Math. Anal. Appl., Vol. 339 (2008) 13421353.

[11]

F. Minhós and J. Fialho, AmbrosettiProdi type results to fourth order nonlinear fully differential equations, Proceedings of Dynamic Systems and Applications, Vol. 5, 325332, Dynamic Publishers, Inc., USA, 2008

[12]

F. Minhós, Location results: an under used tool in higher order boundary value problems, International Conference on Boundary Value Problems: Mathematical Models in Engineering, Biology and Medicine, American Institute of Physics Conference Proceedings, Vol. 1124, 244253, 2009

[13]

G. Noone and W.T.Ang, The inferior boundary condition of a continuous cantilever beam model of the human spine, Australian Physical & Engineering Sciences in Medicine, Vol. 19 no 1 (1996) 2630.

[14]

A. Patwardhan, W. Bunch, K. Meade, R. Vandeby and G. Knight, A biomechanical analog of curve progression and orthotic stabilization in idiopathic scoliosis, J. Biomechanics, Vol 19, no 2 (1986) 103117.

[15]

M. Šenkyřík, Existence of multiple solutions for a third order threepoint regular boundary value problem, Mathematica Bohemica, 119, no. 2 (1994), 113121.
