\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response

Abstract Related Papers Cited by
  • This paper is concerned with the steady state problem of a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. A sufficient condition for the existence of positive steady state solutions is given. Our proof is based on the bifurcation theory and some a priori estimates.
    Mathematics Subject Classification: Primary: 35B32, 35J57; Secondary: 92D25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Amann, Dynamic theory of quasilinear parabolic equations II: Reaction-diffusion systems, Differential Integral Equations, 3 (1990), 13-75.

    [2]

    Y.S. Choi, R. Lui and Y. Yamada, Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 719-730.

    [3]

    M.G. Crandall and P.H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.

    [4]

    Y. Du and X. Liang, A diffusive competition model with a protection zone, J. Differential Equations, 244 (2008), 61-86.

    [5]

    Y. Du, R. Peng and M.X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.

    [6]

    Y. Du and J. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.

    [7]

    J. López-Gómez, "Spectral Theory and Nonlinear Functional Analysis," Research Notes in Mathematics, vol.426, Chapman and Hall/CRC, Boca Raton, FL, 2001.

    [8]

    Y. Lou and W.M. Ni, Diffusion, self-diffusion and cross-diffusion, J. Differential Equations, 131 (1996), 79-131.

    [9]

    Y. Lou, W.M. Ni and Y. Wu, On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst., 4 (1998), 193-203.

    [10]

    K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.

    [11]

    K. Oeda, Coexistence states of a prey-predator model with cross-diffusion and a protection zone, Adv. Math. Sci. Appl., 22 (2012), 501-520.

    [12]

    P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.

    [13]

    N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol., 79 (1979), 83-99.

    [14]

    P.V. Tuoc, Global existence of solutions to Shigesada-Kawasaki-Teramoto cross-diffusion systems on domains of arbitrary dimensions, Proc. Amer. Math. Soc., 135 (2007), 3933-3941.

    [15]

    X. Zou and K. Wang, The protection zone of biological population, Nonlinear Anal. RWA, 12 (2011), 956-964.

    [16]

    X. Zou and K. Wang, A robustness analysis of biological population models with protection zone, Applied Mathematical Modelling, 35 (2011), 5553-5563.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(67) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return