2013, 2013(special): 619-627. doi: 10.3934/proc.2013.2013.619

Fuzzy system of linear equations

1. 

Department of Applied Mathematics, Faculty of Technology and Engineering, The M. S. University of Baroda, Vadodara, Gujarat, India

Received  September 2012 Revised  March 2013 Published  November 2013

Real life applications arising in various fields of Engineering and Sciences like Electrical, Civil, Economics, Dietary etc. can be modeled using system of linear equations. In such models it may happen that the values of the parameters are not known or they cannot be stated precisely only their estimation due to experimental data or experts knowledge is available. In such situation it is convenient to represent such parameters by fuzzy numbers (refer [22]). Klir, [15] gave the results for the existence of solution of linear algebraic equation involving fuzzy numbers. The method to obtain solution of system of linear equations with all the involved parameters being fuzzy is proposed here. The $\alpha$-cut technique is well known in obtaining weak solutions, (refer [7]) for fully fuzzy systems of linear equations (FFSL). In this paper, the conditions for the existence and uniqueness of the fuzzy solution are proved.
Citation: Purnima Pandit. Fuzzy system of linear equations. Conference Publications, 2013, 2013 (special) : 619-627. doi: 10.3934/proc.2013.2013.619
References:
[1]

S. Abbasbandy S., A. Jafarian and R. Ezzati, Conjugate gradient method for fuzzy symmetric positive-definite system of linear equations,, Applied Mathematics and Computation, 171 (2005), 1184.   Google Scholar

[2]

S. Abbasbandy S., R. Ezzati and A. Jafarian, LU decomposition method for solving fuzzy system of linear equations,, Applied Mathematics and Computation \textbf{172} (2006), 172 (2006), 633.   Google Scholar

[3]

S. Abbasbandy and A. Jafarian, Steepest descent method for system of fuzzy linear equations,, Applied Mathematics and Computation \textbf{175} (2006), 175 (2006), 823.   Google Scholar

[4]

T. Allahviranloo, Numerical methods for fuzzy system of linear equations,, Applied Mathematics and Computation \textbf{155} (2004), 155 (2004), 493.   Google Scholar

[5]

T. Allahviranloo, Successive over relaxation iterative method for fuzzy system of linear equations,, Applied Mathematics and Computation \textbf{162} (2004), 162 (2004), 189.   Google Scholar

[6]

T. Allahviranloo, The adomian decomposition method for fuzzy system of linear equations,, Applied Mathematics and Computation \textbf{163} (2005), 163 (2005), 553.   Google Scholar

[7]

T. Allahviranloo, M. Ghanbari, A. A. Hosseinzadeh, E. Haghi and R. Nuraei, A note on fuzzy linear systems,, Fuzzy Sets and Systems \textbf{177}(1) (2011), 177 (2011), 87.   Google Scholar

[8]

T. Allahviranloo, E. Ahmady and N. Ahmady, A method for solving nth order fuzzy linear differential equations,, International Journal of Computer Mathematics, 86 (2009), 730.   Google Scholar

[9]

D. Behera and S. Chakraverty, Solution of Fuzzy System of Linear Equations with Polynomial Parameteric form,, Applications and Applied Mathematics, 7 (2012), 648.   Google Scholar

[10]

J. J. Buckley and Y. Qu, Solving linear and quadratic fuzzy equations,, Fuzzy Sets and Systems, 38 (1990), 43.   Google Scholar

[11]

M. Dehghan, B. Hashemi and M. Ghatee, Computational methods for solving fully fuzzy linear systems,, Applied Mathematics and Computation, 179 (2006), 328.   Google Scholar

[12]

M. Dehghan and B. Hashemi, Solution of the fully fuzzy linear system using the decomposition procedure,, Applied Mathematics and Computation, 182 (2006), 1568.   Google Scholar

[13]

D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications,, Academic Press, (1980).   Google Scholar

[14]

M. Friedman, M. Ming and A. Kandel, Fuzzy linear systems,, Fuzzy Sets and Systems, 96 (1998), 201.   Google Scholar

[15]

G. Klir and B.Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications,, Prentice Hall, (1997).   Google Scholar

[16]

M. Matinfar, S. H. Nasseri and M. Sohrabi, Solving Fuzzy Linear System of Equations by Using Householder Decomposition Method,, Applied Mathematical Sciences, 2 (2008), 2569.   Google Scholar

[17]

S. H. Nasseri, M. Abdi and B. Khabiri, An Application of Fuzzy linear System of Equations in Economic Sciences,, Australian Journal of Basic and Applied Sciences, 5 (2011), 7.   Google Scholar

[18]

S. H. Nasseri and M. Sohrabi, Gram-Schmidt approach for linear System of Equations with fuzzy parameters,, The Journal of Mathematics and Computer Science, 1 (2010), 80.   Google Scholar

[19]

M. J. Quinn, Parallel Computing Theory and Practice,, Oregon State University, (2002).   Google Scholar

[20]

T. Rahgooy, H. Sadoghi and R. Monsefi, Fuzzy Complex System of linear equations Applied to Circuit Analysis,, International Journal of Computer and Electrical Engineering, 1 (2009), 535.   Google Scholar

[21]

A. Sadeghi, I. M. Ahmad and A. F. Jameel, Solving Systems of Fuzzy Differential Equation,, International Mathematical Forum, 6 (2011), 2087.   Google Scholar

[22]

L. A. Zadeh, Fuzzy sets,, Information and Control, 8 (1965), 338.   Google Scholar

show all references

References:
[1]

S. Abbasbandy S., A. Jafarian and R. Ezzati, Conjugate gradient method for fuzzy symmetric positive-definite system of linear equations,, Applied Mathematics and Computation, 171 (2005), 1184.   Google Scholar

[2]

S. Abbasbandy S., R. Ezzati and A. Jafarian, LU decomposition method for solving fuzzy system of linear equations,, Applied Mathematics and Computation \textbf{172} (2006), 172 (2006), 633.   Google Scholar

[3]

S. Abbasbandy and A. Jafarian, Steepest descent method for system of fuzzy linear equations,, Applied Mathematics and Computation \textbf{175} (2006), 175 (2006), 823.   Google Scholar

[4]

T. Allahviranloo, Numerical methods for fuzzy system of linear equations,, Applied Mathematics and Computation \textbf{155} (2004), 155 (2004), 493.   Google Scholar

[5]

T. Allahviranloo, Successive over relaxation iterative method for fuzzy system of linear equations,, Applied Mathematics and Computation \textbf{162} (2004), 162 (2004), 189.   Google Scholar

[6]

T. Allahviranloo, The adomian decomposition method for fuzzy system of linear equations,, Applied Mathematics and Computation \textbf{163} (2005), 163 (2005), 553.   Google Scholar

[7]

T. Allahviranloo, M. Ghanbari, A. A. Hosseinzadeh, E. Haghi and R. Nuraei, A note on fuzzy linear systems,, Fuzzy Sets and Systems \textbf{177}(1) (2011), 177 (2011), 87.   Google Scholar

[8]

T. Allahviranloo, E. Ahmady and N. Ahmady, A method for solving nth order fuzzy linear differential equations,, International Journal of Computer Mathematics, 86 (2009), 730.   Google Scholar

[9]

D. Behera and S. Chakraverty, Solution of Fuzzy System of Linear Equations with Polynomial Parameteric form,, Applications and Applied Mathematics, 7 (2012), 648.   Google Scholar

[10]

J. J. Buckley and Y. Qu, Solving linear and quadratic fuzzy equations,, Fuzzy Sets and Systems, 38 (1990), 43.   Google Scholar

[11]

M. Dehghan, B. Hashemi and M. Ghatee, Computational methods for solving fully fuzzy linear systems,, Applied Mathematics and Computation, 179 (2006), 328.   Google Scholar

[12]

M. Dehghan and B. Hashemi, Solution of the fully fuzzy linear system using the decomposition procedure,, Applied Mathematics and Computation, 182 (2006), 1568.   Google Scholar

[13]

D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications,, Academic Press, (1980).   Google Scholar

[14]

M. Friedman, M. Ming and A. Kandel, Fuzzy linear systems,, Fuzzy Sets and Systems, 96 (1998), 201.   Google Scholar

[15]

G. Klir and B.Yuan, Fuzzy Sets and Fuzzy Logic Theory and Applications,, Prentice Hall, (1997).   Google Scholar

[16]

M. Matinfar, S. H. Nasseri and M. Sohrabi, Solving Fuzzy Linear System of Equations by Using Householder Decomposition Method,, Applied Mathematical Sciences, 2 (2008), 2569.   Google Scholar

[17]

S. H. Nasseri, M. Abdi and B. Khabiri, An Application of Fuzzy linear System of Equations in Economic Sciences,, Australian Journal of Basic and Applied Sciences, 5 (2011), 7.   Google Scholar

[18]

S. H. Nasseri and M. Sohrabi, Gram-Schmidt approach for linear System of Equations with fuzzy parameters,, The Journal of Mathematics and Computer Science, 1 (2010), 80.   Google Scholar

[19]

M. J. Quinn, Parallel Computing Theory and Practice,, Oregon State University, (2002).   Google Scholar

[20]

T. Rahgooy, H. Sadoghi and R. Monsefi, Fuzzy Complex System of linear equations Applied to Circuit Analysis,, International Journal of Computer and Electrical Engineering, 1 (2009), 535.   Google Scholar

[21]

A. Sadeghi, I. M. Ahmad and A. F. Jameel, Solving Systems of Fuzzy Differential Equation,, International Mathematical Forum, 6 (2011), 2087.   Google Scholar

[22]

L. A. Zadeh, Fuzzy sets,, Information and Control, 8 (1965), 338.   Google Scholar

[1]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[2]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[3]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[4]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[5]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[6]

Tianwen Luo, Tao Tao, Liqun Zhang. Finite energy weak solutions of 2d Boussinesq equations with diffusive temperature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3737-3765. doi: 10.3934/dcds.2019230

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[9]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[10]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[11]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[12]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[13]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[14]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[15]

Min Ji, Xinna Ye, Fangyao Qian, T.C.E. Cheng, Yiwei Jiang. Parallel-machine scheduling in shared manufacturing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020174

[16]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[17]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[18]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[19]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[20]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

 Impact Factor: 

Metrics

  • PDF downloads (115)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]