• Previous Article
    Control of attractors in nonlinear dynamical systems using external noise: Effects of noise on synchronization phenomena
  • PROC Home
  • This Issue
  • Next Article
    Analysis of a mathematical model for jellyfish blooms and the cambric fish invasion
2013, 2013(special): 673-684. doi: 10.3934/proc.2013.2013.673

Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D

1. 

Southern Illinois University, Department of Mathematics, MC 4408, 1245 Lincoln Drive, Carbondale, IL 62901-7316

Received  September 2012 Revised  March 2013 Published  November 2013

Semilinear heat equations on rectangular domains in $\mathbb{R}^2$ (conduction through plates) with cubic-type nonlinearities and perturbed by an additive Q-regular space-time white noise are considered analytically. These models as 2nd order SPDEs (stochastic partial differential equations) with non-random Dirichlet-type boundary conditions describe the temperature- or substance-distribution on rectangular domains as met in engineering and biochemistry. We discuss their analysis by the eigenfunction approach allowing us to truncate the infinite-dimensional stochastic systems (i.e. the SDEs of Fourier coefficients related to semilinear SPDEs), to control its energy, existence, uniqueness, continuity and stability. The functional of expected energy is estimated at time $t$ in terms of system-parameters.
Citation: Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673
References:
[1]

E. Allen, "Modeling with Stochastic Differential Equations,", Springer-Verlag, (2007).   Google Scholar

[2]

L. Arnold, "Stochastic Differential Equations,", John Wiley & Sons, (1974).   Google Scholar

[3]

A. Bensoussan and R. Temam, Équations aux dérivées partielles stochastiques non linéaires. I. (in French),, Israel J. Math., 11 (1972), 95.   Google Scholar

[4]

A. Bensoussan, Some existence results for stochastic partial differential equations,, in Stochastic partial differential equations and applications, (1990), 37.   Google Scholar

[5]

P.L. Chow, "Stochastic Partial Differential Equations,", Chapman & Hall/CRC, (2007).   Google Scholar

[6]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions,", Cambridge University Press, (1992).   Google Scholar

[7]

G. Da Prato and J. Zabzcyk, "Ergodicity for Infinite Dimensional Systems,", Cambridge University Press, (1996).   Google Scholar

[8]

L.C. Evans, "Partial Differential Equations,", AMS, (2010).   Google Scholar

[9]

T.C. Gard, "Introduction to Stochastic Differential Equations,", Marcel Dekker, (1988).   Google Scholar

[10]

W. Grecksch and C. Tudor, "Stochastic Evolution Equations. A Hilbert space approach,", Akademie-Verlag, (1995).   Google Scholar

[11]

A.L. Hodgkin and W.A.H. Rushton, The electrical constants of a crustacean nerve fibre,, Proc. Roy. Soc. London. B 133 (1946) 444-479., 133 (1946), 444.   Google Scholar

[12]

R.Z. Khasminskiĭ, "Stochastic Stability of Differential Equations,", Sijthoff & Noordhoff, (1980).   Google Scholar

[13]

C. Koch, "Biophysics of Computation: Information Processing in Single Neurons,", Oxford U. Press, (1999).   Google Scholar

[14]

C. Koch and I. Segev, "Methods in Neuronal Modeling: From Ions to Networks (2-nd edition),", MIT Press, (1998).   Google Scholar

[15]

E. Pardoux, Équations aux dérivées partielles stochastiques non linéaires monotones,, PhD. Thesis, (1975).   Google Scholar

[16]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes,, Stochastics 3 (1979), (1979), 127.   Google Scholar

[17]

B.L. Rozovskii, "Stochastic Evolution Systems,", Kluwer, (1990).   Google Scholar

[18]

H. Schurz, "Stability, Stationarity, and Boundedness of Some Implicit Numerical Methods for Stochastic Differential Equations and Applications'',, Logos-Verlag, (1997).   Google Scholar

[19]

H. Schurz, Nonlinear stochastic wave equations in $\mathbbR^1$ with power-law nonlinearity and additive space-time noise,, Contemp. Math., 440 (2007), 223.   Google Scholar

[20]

H. Schurz, Existence and uniqueness of solutions of semilinear stochastic infinite-dimensional differential systems with H-regular noise,, J. Math. Anal. Appl., 332 (2007), 334.   Google Scholar

[21]

H. Schurz, Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise,, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), 353.   Google Scholar

[22]

H. Schurz, Nonlinear stochastic heat equations with cubic nonlinearities and additive Q-regular noise in $\mathbbR^1$,, Electron. J. Differ. Equ. Conf., 19 (2010), 221.   Google Scholar

[23]

A.N. Shiryaev, "Probability,", Springer-Verlag, (1996).   Google Scholar

[24]

G.J. Stuart and B. Sakmann, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites,, Nature 367 (1994) 69-72., 367 (1994), 69.   Google Scholar

[25]

H.C. Tuckwell and J.B. Walsh, Random currents through nerve membranes. I. Uniform poisson or white noise current in one-dimensional cables,, Biol. Cybern., 49 (1983), 99.   Google Scholar

[26]

C. Tudor, On stochastic evolution equations driven by continuous semimartingales,, Stochastics 23 (1988), 23 (1988), 179.   Google Scholar

[27]

J.B. Walsh, An introduction to stochastic partial differential equations,, Lecture Notes in Math., 1180 (1986), 265.   Google Scholar

[28]

J.B. Walsh, Finite element methods for parabolic stochastic PDE's,, Potential Anal., 23 (2005), 1.   Google Scholar

show all references

References:
[1]

E. Allen, "Modeling with Stochastic Differential Equations,", Springer-Verlag, (2007).   Google Scholar

[2]

L. Arnold, "Stochastic Differential Equations,", John Wiley & Sons, (1974).   Google Scholar

[3]

A. Bensoussan and R. Temam, Équations aux dérivées partielles stochastiques non linéaires. I. (in French),, Israel J. Math., 11 (1972), 95.   Google Scholar

[4]

A. Bensoussan, Some existence results for stochastic partial differential equations,, in Stochastic partial differential equations and applications, (1990), 37.   Google Scholar

[5]

P.L. Chow, "Stochastic Partial Differential Equations,", Chapman & Hall/CRC, (2007).   Google Scholar

[6]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions,", Cambridge University Press, (1992).   Google Scholar

[7]

G. Da Prato and J. Zabzcyk, "Ergodicity for Infinite Dimensional Systems,", Cambridge University Press, (1996).   Google Scholar

[8]

L.C. Evans, "Partial Differential Equations,", AMS, (2010).   Google Scholar

[9]

T.C. Gard, "Introduction to Stochastic Differential Equations,", Marcel Dekker, (1988).   Google Scholar

[10]

W. Grecksch and C. Tudor, "Stochastic Evolution Equations. A Hilbert space approach,", Akademie-Verlag, (1995).   Google Scholar

[11]

A.L. Hodgkin and W.A.H. Rushton, The electrical constants of a crustacean nerve fibre,, Proc. Roy. Soc. London. B 133 (1946) 444-479., 133 (1946), 444.   Google Scholar

[12]

R.Z. Khasminskiĭ, "Stochastic Stability of Differential Equations,", Sijthoff & Noordhoff, (1980).   Google Scholar

[13]

C. Koch, "Biophysics of Computation: Information Processing in Single Neurons,", Oxford U. Press, (1999).   Google Scholar

[14]

C. Koch and I. Segev, "Methods in Neuronal Modeling: From Ions to Networks (2-nd edition),", MIT Press, (1998).   Google Scholar

[15]

E. Pardoux, Équations aux dérivées partielles stochastiques non linéaires monotones,, PhD. Thesis, (1975).   Google Scholar

[16]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes,, Stochastics 3 (1979), (1979), 127.   Google Scholar

[17]

B.L. Rozovskii, "Stochastic Evolution Systems,", Kluwer, (1990).   Google Scholar

[18]

H. Schurz, "Stability, Stationarity, and Boundedness of Some Implicit Numerical Methods for Stochastic Differential Equations and Applications'',, Logos-Verlag, (1997).   Google Scholar

[19]

H. Schurz, Nonlinear stochastic wave equations in $\mathbbR^1$ with power-law nonlinearity and additive space-time noise,, Contemp. Math., 440 (2007), 223.   Google Scholar

[20]

H. Schurz, Existence and uniqueness of solutions of semilinear stochastic infinite-dimensional differential systems with H-regular noise,, J. Math. Anal. Appl., 332 (2007), 334.   Google Scholar

[21]

H. Schurz, Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise,, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), 353.   Google Scholar

[22]

H. Schurz, Nonlinear stochastic heat equations with cubic nonlinearities and additive Q-regular noise in $\mathbbR^1$,, Electron. J. Differ. Equ. Conf., 19 (2010), 221.   Google Scholar

[23]

A.N. Shiryaev, "Probability,", Springer-Verlag, (1996).   Google Scholar

[24]

G.J. Stuart and B. Sakmann, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites,, Nature 367 (1994) 69-72., 367 (1994), 69.   Google Scholar

[25]

H.C. Tuckwell and J.B. Walsh, Random currents through nerve membranes. I. Uniform poisson or white noise current in one-dimensional cables,, Biol. Cybern., 49 (1983), 99.   Google Scholar

[26]

C. Tudor, On stochastic evolution equations driven by continuous semimartingales,, Stochastics 23 (1988), 23 (1988), 179.   Google Scholar

[27]

J.B. Walsh, An introduction to stochastic partial differential equations,, Lecture Notes in Math., 1180 (1986), 265.   Google Scholar

[28]

J.B. Walsh, Finite element methods for parabolic stochastic PDE's,, Potential Anal., 23 (2005), 1.   Google Scholar

[1]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[2]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[3]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[4]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[5]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[6]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[7]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[8]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[9]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[12]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[16]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[17]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[18]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[19]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[20]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

 Impact Factor: 

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]