• Previous Article
    Control of attractors in nonlinear dynamical systems using external noise: Effects of noise on synchronization phenomena
  • PROC Home
  • This Issue
  • Next Article
    Analysis of a mathematical model for jellyfish blooms and the cambric fish invasion
2013, 2013(special): 673-684. doi: 10.3934/proc.2013.2013.673

Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D

1. 

Southern Illinois University, Department of Mathematics, MC 4408, 1245 Lincoln Drive, Carbondale, IL 62901-7316

Received  September 2012 Revised  March 2013 Published  November 2013

Semilinear heat equations on rectangular domains in $\mathbb{R}^2$ (conduction through plates) with cubic-type nonlinearities and perturbed by an additive Q-regular space-time white noise are considered analytically. These models as 2nd order SPDEs (stochastic partial differential equations) with non-random Dirichlet-type boundary conditions describe the temperature- or substance-distribution on rectangular domains as met in engineering and biochemistry. We discuss their analysis by the eigenfunction approach allowing us to truncate the infinite-dimensional stochastic systems (i.e. the SDEs of Fourier coefficients related to semilinear SPDEs), to control its energy, existence, uniqueness, continuity and stability. The functional of expected energy is estimated at time $t$ in terms of system-parameters.
Citation: Henri Schurz. Stochastic heat equations with cubic nonlinearity and additive space-time noise in 2D. Conference Publications, 2013, 2013 (special) : 673-684. doi: 10.3934/proc.2013.2013.673
References:
[1]

E. Allen, "Modeling with Stochastic Differential Equations," Springer-Verlag, New York, 2007.

[2]

L. Arnold, "Stochastic Differential Equations," John Wiley & Sons, Inc., New York, 1974

[3]

A. Bensoussan and R. Temam, Équations aux dérivées partielles stochastiques non linéaires. I. (in French), Israel J. Math., 11 (1972) 95-129.

[4]

A. Bensoussan, Some existence results for stochastic partial differential equations, in Stochastic partial differential equations and applications, (Trento, 1990), p. 37-53, Pitman Res. Notes Math. Ser., 268, Longman Sci. Tech., Harlow, 1992.

[5]

P.L. Chow, "Stochastic Partial Differential Equations," Chapman & Hall/CRC, Boca Raton, FL, 2007.

[6]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Cambridge University Press, Cambridge, 1992.

[7]

G. Da Prato and J. Zabzcyk, "Ergodicity for Infinite Dimensional Systems," Cambridge University Press, Cambridge, 1996.

[8]

L.C. Evans, "Partial Differential Equations," AMS, Providence, 2010.

[9]

T.C. Gard, "Introduction to Stochastic Differential Equations," Marcel Dekker, Basel, 1988.

[10]

W. Grecksch and C. Tudor, "Stochastic Evolution Equations. A Hilbert space approach," Akademie-Verlag, Berlin, 1995.

[11]

A.L. Hodgkin and W.A.H. Rushton, The electrical constants of a crustacean nerve fibre, Proc. Roy. Soc. London. B 133 (1946) 444-479.

[12]

R.Z. Khasminskiĭ, "Stochastic Stability of Differential Equations," Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.

[13]

C. Koch, "Biophysics of Computation: Information Processing in Single Neurons," Oxford U. Press, Oxford, 1999.

[14]

C. Koch and I. Segev, "Methods in Neuronal Modeling: From Ions to Networks (2-nd edition)," MIT Press, Cambridge, MA, 1998.

[15]

E. Pardoux, Équations aux dérivées partielles stochastiques non linéaires monotones, PhD. Thesis, U. Paris XI, 1975.

[16]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics 3 (1979), no. 2, 127-167.

[17]

B.L. Rozovskii, "Stochastic Evolution Systems," Kluwer, Dordrecht, 1990.

[18]

H. Schurz, "Stability, Stationarity, and Boundedness of Some Implicit Numerical Methods for Stochastic Differential Equations and Applications'', Logos-Verlag, Berlin, 1997.

[19]

H. Schurz, Nonlinear stochastic wave equations in $\mathbbR^1$ with power-law nonlinearity and additive space-time noise, Contemp. Math., 440 (2007), 223-242.

[20]

H. Schurz, Existence and uniqueness of solutions of semilinear stochastic infinite-dimensional differential systems with H-regular noise, J. Math. Anal. Appl., 332 (1) (2007), 334-345.

[21]

H. Schurz, Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), no. 2, 353-363.

[22]

H. Schurz, Nonlinear stochastic heat equations with cubic nonlinearities and additive Q-regular noise in $\mathbbR^1$, Electron. J. Differ. Equ. Conf., 19 (2010), 221-233.

[23]

A.N. Shiryaev, "Probability," Springer-Verlag, Berlin, 1996.

[24]

G.J. Stuart and B. Sakmann, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites, Nature 367 (1994) 69-72.

[25]

H.C. Tuckwell and J.B. Walsh, Random currents through nerve membranes. I. Uniform poisson or white noise current in one-dimensional cables, Biol. Cybern., 49 (1983), no. 2, 99-110.

[26]

C. Tudor, On stochastic evolution equations driven by continuous semimartingales, Stochastics 23 (1988), no. 2, 179-195.

[27]

J.B. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Math., 1180, Springer, Berlin-New York, 1986, 265-439.

[28]

J.B. Walsh, Finite element methods for parabolic stochastic PDE's, Potential Anal., 23 (2005), no. 1, 1-43.

show all references

References:
[1]

E. Allen, "Modeling with Stochastic Differential Equations," Springer-Verlag, New York, 2007.

[2]

L. Arnold, "Stochastic Differential Equations," John Wiley & Sons, Inc., New York, 1974

[3]

A. Bensoussan and R. Temam, Équations aux dérivées partielles stochastiques non linéaires. I. (in French), Israel J. Math., 11 (1972) 95-129.

[4]

A. Bensoussan, Some existence results for stochastic partial differential equations, in Stochastic partial differential equations and applications, (Trento, 1990), p. 37-53, Pitman Res. Notes Math. Ser., 268, Longman Sci. Tech., Harlow, 1992.

[5]

P.L. Chow, "Stochastic Partial Differential Equations," Chapman & Hall/CRC, Boca Raton, FL, 2007.

[6]

G. Da Prato and J. Zabczyk, "Stochastic Equations in Infinite Dimensions," Cambridge University Press, Cambridge, 1992.

[7]

G. Da Prato and J. Zabzcyk, "Ergodicity for Infinite Dimensional Systems," Cambridge University Press, Cambridge, 1996.

[8]

L.C. Evans, "Partial Differential Equations," AMS, Providence, 2010.

[9]

T.C. Gard, "Introduction to Stochastic Differential Equations," Marcel Dekker, Basel, 1988.

[10]

W. Grecksch and C. Tudor, "Stochastic Evolution Equations. A Hilbert space approach," Akademie-Verlag, Berlin, 1995.

[11]

A.L. Hodgkin and W.A.H. Rushton, The electrical constants of a crustacean nerve fibre, Proc. Roy. Soc. London. B 133 (1946) 444-479.

[12]

R.Z. Khasminskiĭ, "Stochastic Stability of Differential Equations," Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.

[13]

C. Koch, "Biophysics of Computation: Information Processing in Single Neurons," Oxford U. Press, Oxford, 1999.

[14]

C. Koch and I. Segev, "Methods in Neuronal Modeling: From Ions to Networks (2-nd edition)," MIT Press, Cambridge, MA, 1998.

[15]

E. Pardoux, Équations aux dérivées partielles stochastiques non linéaires monotones, PhD. Thesis, U. Paris XI, 1975.

[16]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes, Stochastics 3 (1979), no. 2, 127-167.

[17]

B.L. Rozovskii, "Stochastic Evolution Systems," Kluwer, Dordrecht, 1990.

[18]

H. Schurz, "Stability, Stationarity, and Boundedness of Some Implicit Numerical Methods for Stochastic Differential Equations and Applications'', Logos-Verlag, Berlin, 1997.

[19]

H. Schurz, Nonlinear stochastic wave equations in $\mathbbR^1$ with power-law nonlinearity and additive space-time noise, Contemp. Math., 440 (2007), 223-242.

[20]

H. Schurz, Existence and uniqueness of solutions of semilinear stochastic infinite-dimensional differential systems with H-regular noise, J. Math. Anal. Appl., 332 (1) (2007), 334-345.

[21]

H. Schurz, Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), no. 2, 353-363.

[22]

H. Schurz, Nonlinear stochastic heat equations with cubic nonlinearities and additive Q-regular noise in $\mathbbR^1$, Electron. J. Differ. Equ. Conf., 19 (2010), 221-233.

[23]

A.N. Shiryaev, "Probability," Springer-Verlag, Berlin, 1996.

[24]

G.J. Stuart and B. Sakmann, Active propagation of somatic action potentials into neocortical pyramidal cell dendrites, Nature 367 (1994) 69-72.

[25]

H.C. Tuckwell and J.B. Walsh, Random currents through nerve membranes. I. Uniform poisson or white noise current in one-dimensional cables, Biol. Cybern., 49 (1983), no. 2, 99-110.

[26]

C. Tudor, On stochastic evolution equations driven by continuous semimartingales, Stochastics 23 (1988), no. 2, 179-195.

[27]

J.B. Walsh, An introduction to stochastic partial differential equations, Lecture Notes in Math., 1180, Springer, Berlin-New York, 1986, 265-439.

[28]

J.B. Walsh, Finite element methods for parabolic stochastic PDE's, Potential Anal., 23 (2005), no. 1, 1-43.

[1]

Henri Schurz. Stochastic wave equations with cubic nonlinearity and Q-regular additive noise in $\mathbb{R}^2$. Conference Publications, 2011, 2011 (Special) : 1299-1308. doi: 10.3934/proc.2011.2011.1299

[2]

Henri Schurz. Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 353-363. doi: 10.3934/dcdss.2008.1.353

[3]

Jae Gil Choi, David Skoug. Algebraic structure of the $ L_2 $ analytic Fourier–Feynman transform associated with Gaussian paths on Wiener space. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3829-3842. doi: 10.3934/cpaa.2020169

[4]

Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure and Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607

[5]

Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a space-time white noise. Mathematical Control and Related Fields, 2018, 8 (3&4) : 739-751. doi: 10.3934/mcrf.2018032

[6]

Boris P. Belinskiy, Peter Caithamer. Energy of an elastic mechanical system driven by Gaussian noise white in time. Conference Publications, 2001, 2001 (Special) : 39-49. doi: 10.3934/proc.2001.2001.39

[7]

Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1523-1533. doi: 10.3934/dcdsb.2018056

[8]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[9]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

[10]

Guangying Lv, Hongjun Gao. Impacts of noise on heat equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5769-5784. doi: 10.3934/dcdsb.2019105

[11]

Ionuţ Munteanu. Design of boundary stabilizers for the non-autonomous cubic semilinear heat equation driven by a multiplicative noise. Evolution Equations and Control Theory, 2020, 9 (3) : 795-816. doi: 10.3934/eect.2020034

[12]

Adam Andersson, Felix Lindner. Malliavin regularity and weak approximation of semilinear SPDEs with Lévy noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4271-4294. doi: 10.3934/dcdsb.2019081

[13]

Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381

[14]

Georgios T. Kossioris, Georgios E. Zouraris. Finite element approximations for a linear Cahn-Hilliard-Cook equation driven by the space derivative of a space-time white noise. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1845-1872. doi: 10.3934/dcdsb.2013.18.1845

[15]

Boris P. Belinskiy, Peter Caithamer. Energy estimate for the wave equation driven by a fractional Gaussian noise. Conference Publications, 2007, 2007 (Special) : 92-101. doi: 10.3934/proc.2007.2007.92

[16]

Norisuke Ioku. Some space-time integrability estimates of the solution for heat equations in two dimensions. Conference Publications, 2011, 2011 (Special) : 707-716. doi: 10.3934/proc.2011.2011.707

[17]

Min Niu, Bin Xie. Comparison theorem and correlation for stochastic heat equations driven by Lévy space-time white noises. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 2989-3009. doi: 10.3934/dcdsb.2018296

[18]

Igor Kukavica. On Fourier parametrization of global attractors for equations in one space dimension. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 553-560. doi: 10.3934/dcds.2005.13.553

[19]

Yuming Zhang. On continuity equations in space-time domains. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4837-4873. doi: 10.3934/dcds.2018212

[20]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

 Impact Factor: 

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]