
Previous Article
Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents
 PROC Home
 This Issue

Next Article
Stochastic heat equations with cubic nonlinearity and additive spacetime noise in 2D
Control of attractors in nonlinear dynamical systems using external noise: Effects of noise on synchronization phenomena
1.  Department of Applied Physics, Faculty of Science, Tokyo Institute of Technology, 2121 Ohokayama, Meguroku, Tokyo 1520033, Japan 
2.  FIRST, Aihara Innovative Mathematical Modelling Project, Japan Science and Technology Agency, 461 Komaba, Meguroku, Tokyo 1538505, Japan 
References:
show all references
References:
[1] 
Zhen Li, Jicheng Liu. Synchronization for stochastic differential equations with nonlinear multiplicative noise in the mean square sense. Discrete and Continuous Dynamical Systems  B, 2019, 24 (10) : 57095736. doi: 10.3934/dcdsb.2019103 
[2] 
Roberta Bosi. Classical limit for linear and nonlinear quantum FokkerPlanck systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 845870. doi: 10.3934/cpaa.2009.8.845 
[3] 
Michael Herty, Lorenzo Pareschi. FokkerPlanck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165179. doi: 10.3934/krm.2010.3.165 
[4] 
John W. Barrett, Endre Süli. Existence of global weak solutions to FokkerPlanck and NavierStokesFokkerPlanck equations in kinetic models of dilute polymers. Discrete and Continuous Dynamical Systems  S, 2010, 3 (3) : 371408. doi: 10.3934/dcdss.2010.3.371 
[5] 
ShuiNee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of FokkerPlanck equations on graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 49294950. doi: 10.3934/dcds.2018215 
[6] 
Martin Burger, Ina Humpert, JanFrederik Pietschmann. On FokkerPlanck equations with In and Outflow of Mass. Kinetic and Related Models, 2020, 13 (2) : 249277. doi: 10.3934/krm.2020009 
[7] 
Zeinab Karaki. Trend to the equilibrium for the FokkerPlanck system with an external magnetic field. Kinetic and Related Models, 2020, 13 (2) : 309344. doi: 10.3934/krm.2020011 
[8] 
Ioannis Markou. Hydrodynamic limit for a FokkerPlanck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12 (4) : 683705. doi: 10.3934/nhm.2017028 
[9] 
YoungPil Choi, Samir Salem. CuckerSmale flocking particles with multiplicative noises: Stochastic meanfield limit and phase transition. Kinetic and Related Models, 2019, 12 (3) : 573592. doi: 10.3934/krm.2019023 
[10] 
SeungYeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A meanfield limit of the particle swarmalator model. Kinetic and Related Models, 2021, 14 (3) : 429468. doi: 10.3934/krm.2021011 
[11] 
Hongjie Dong, Yan Guo, Timur Yastrzhembskiy. Kinetic FokkerPlanck and Landau equations with specular reflection boundary condition. Kinetic and Related Models, 2022, 15 (3) : 467516. doi: 10.3934/krm.2022003 
[12] 
Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic FokkerPlanck equation with heavy tails equilibria: The critical case. Kinetic and Related Models, 2019, 12 (4) : 727748. doi: 10.3934/krm.2019028 
[13] 
William F. Thompson, Rachel Kuske, YueXian Li. Stochastic phase dynamics of noise driven synchronization of two conditional coherent oscillators. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 29712995. doi: 10.3934/dcds.2012.32.2971 
[14] 
Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic FokkerPlanck equation. Kinetic and Related Models, 2018, 11 (2) : 357395. doi: 10.3934/krm.2018017 
[15] 
Marco Torregrossa, Giuseppe Toscani. On a FokkerPlanck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337355. doi: 10.3934/krm.2018016 
[16] 
Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model FokkerPlanck equation. Kinetic and Related Models, 2012, 5 (3) : 485503. doi: 10.3934/krm.2012.5.485 
[17] 
José Antonio Alcántara, Simone Calogero. On a relativistic FokkerPlanck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401426. doi: 10.3934/krm.2011.4.401 
[18] 
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the timefractional FokkerPlanck equation. Journal of Dynamics and Games, 2021, 8 (4) : 381402. doi: 10.3934/jdg.2021013 
[19] 
Gerasimenko Viktor. Heisenberg picture of quantum kinetic evolution in meanfield limit. Kinetic and Related Models, 2011, 4 (1) : 385399. doi: 10.3934/krm.2011.4.385 
[20] 
SeungYeal Ha, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. Uniform stability and meanfield limit for the augmented Kuramoto model. Networks and Heterogeneous Media, 2018, 13 (2) : 297322. doi: 10.3934/nhm.2018013 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]