2013, 2013(special): 69-76. doi: 10.3934/proc.2013.2013.69

Modeling confinement in Étang de Thau: Numerical simulations and multi-scale aspects

1. 

INRIA, Virtual Plants, C.C. 06002, 95 rue de la Galéra, 34095 Montpellier Cedex 5, France

2. 

Université Européenne de Bretagne, LMBA (UMR CNRS 6205), Université de Bretagne-Sud & Inria Nancy-Grand Est, CALVI Project, France

3. 

INRIA, Inria & LJK, 95 rue de la Galéra, 34090 Montpellier, France

Received  September 2012 Revised  February 2013 Published  November 2013

The main purpose of this paper is to implement the mathematical model of confinement proposed in [8] in an actual lagoon, here the Étang de Thau, in southern France.
Citation: Jean-Philippe Bernard, Emmanuel Frénod, Antoine Rousseau. Modeling confinement in Étang de Thau: Numerical simulations and multi-scale aspects. Conference Publications, 2013, 2013 (special) : 69-76. doi: 10.3934/proc.2013.2013.69
References:
[1]

J. Audoin, Hydrologie de l'étang de Thau., Revue des Travaux de l'Institut des Pêches Maritimes, (1962), 5. Google Scholar

[2]

E. Abadie, Z Amzil, C Belin, M.-A. Comps, P. Elzière-Papayanni, P. Lassus, C. Le Bec, C. Marcaillou-Le-Baut, and E.and Poggi R. Nézan., Contamination de l'étang de Thau par Alexandrium tamarense., Technical report, (1999). Google Scholar

[3]

R. S. K. Barnes., A critical appraisal of the application of Guélorget and Pertuisot's concept of the paralic ecosystem and confinement to macrotidal europe., Estuarine, (1994), 41. Google Scholar

[4]

C. Delbos, A. Damasso, and J. Gilbert., Une ressouce alimentaire : la conchyliculture., CIHEAM - Options Mediterraneennes, (1975), 65. Google Scholar

[5]

J.-P. Debenay, J.-P. Perthuisot, and B. Colleuil., Expression numérique du confinement par les peuplements de foraminifères. app. aux domaines paral. actuels afri. w., C. R. Acad. Sci., (1993), 1823. Google Scholar

[6]

B. Engquist and A. Majda., Absorbing boundary conditions for the numerical simulation of waves., Math. Comp., (1977), 629. Google Scholar

[7]

E. Frénod and E. Goubert., A first step towards modelling confinement of paralic ecosystems., Ecological Modelling, (2007), 1. Google Scholar

[8]

E. Frénod and A. Rousseau., Paralic confinement: Models and simulations., Acta Applicandae Mathematicae, (2013), 1. Google Scholar

[9]

O. Guélorget, G. F. Frisoni, and J.-P. Perthuisot., La zonation biologique des milieux lagunaires : définition d'une échelle de confinement dans le domaine paralique méditérranéen., Journal de Recherche Océanographique, (1983), 15. Google Scholar

[10]

O. Guélorget, D. Gaujous, M. Louis, and J.-P. Perthuisot., Macrobenthofauna of lagoons in guadaloupean mangroves (lesser antilles) : role and expression of confinement., Journal of Coastal Research, (1990), 611. Google Scholar

[11]

O. Guélorget and J.-P. Perthuisot., Le confinement, paramètre essentiel de la dynamique biologique du domaine paralique., Sciences Géologiques, (1983), 25. Google Scholar

[12]

O. Guélorget and J.-P. Perthuisot., Le domaine paralique. Expressions géologiques biologique, et économique du confinement., Presse de l'école normale supérieure 16-1983, (1983), 16. Google Scholar

[13]

L. Halpern., Artificial boundary conditions for the linear advection diffusion equation., Math. Comp., (1986), 425. Google Scholar

[14]

F. Hecht, O. Pironneau, and A. Le Hyaric., FreeFem++ manual., 2004., (). Google Scholar

[15]

L. Halpern and M. Schatzman., Artificial boundary conditions for incompressible viscous flows., SIAM J. Math. Anal., (1989), 308. Google Scholar

[16]

A. Ibrahim, O. Guélorget, G. G. Frisoni, J. M. Rouchy, A. Martin, and J.-P. Perthuisot., Expressions hydrochimiques, biologiques et sédimentologiques des gradients de confinement dans la lagune de guemsah (golfe de suez, egypte)., Oceanologica Acta, (1985), 303. Google Scholar

[17]

F. Redois and J.-P. Debenay., Influence du confinement sur la répartition des foraminifères benthiques : exemples de l'estran d'une ria mésotidale de Bretagne méridionale., Revue de Paléobiologie, (1996), 243. Google Scholar

[18]

D. Tagliapietra, M. Sigovini, and V. Ghirardini., A review of terms and definitions to categorise estuaries, lagoons and associated environments., Marine and Freshwater Research, (2009), 497. Google Scholar

show all references

References:
[1]

J. Audoin, Hydrologie de l'étang de Thau., Revue des Travaux de l'Institut des Pêches Maritimes, (1962), 5. Google Scholar

[2]

E. Abadie, Z Amzil, C Belin, M.-A. Comps, P. Elzière-Papayanni, P. Lassus, C. Le Bec, C. Marcaillou-Le-Baut, and E.and Poggi R. Nézan., Contamination de l'étang de Thau par Alexandrium tamarense., Technical report, (1999). Google Scholar

[3]

R. S. K. Barnes., A critical appraisal of the application of Guélorget and Pertuisot's concept of the paralic ecosystem and confinement to macrotidal europe., Estuarine, (1994), 41. Google Scholar

[4]

C. Delbos, A. Damasso, and J. Gilbert., Une ressouce alimentaire : la conchyliculture., CIHEAM - Options Mediterraneennes, (1975), 65. Google Scholar

[5]

J.-P. Debenay, J.-P. Perthuisot, and B. Colleuil., Expression numérique du confinement par les peuplements de foraminifères. app. aux domaines paral. actuels afri. w., C. R. Acad. Sci., (1993), 1823. Google Scholar

[6]

B. Engquist and A. Majda., Absorbing boundary conditions for the numerical simulation of waves., Math. Comp., (1977), 629. Google Scholar

[7]

E. Frénod and E. Goubert., A first step towards modelling confinement of paralic ecosystems., Ecological Modelling, (2007), 1. Google Scholar

[8]

E. Frénod and A. Rousseau., Paralic confinement: Models and simulations., Acta Applicandae Mathematicae, (2013), 1. Google Scholar

[9]

O. Guélorget, G. F. Frisoni, and J.-P. Perthuisot., La zonation biologique des milieux lagunaires : définition d'une échelle de confinement dans le domaine paralique méditérranéen., Journal de Recherche Océanographique, (1983), 15. Google Scholar

[10]

O. Guélorget, D. Gaujous, M. Louis, and J.-P. Perthuisot., Macrobenthofauna of lagoons in guadaloupean mangroves (lesser antilles) : role and expression of confinement., Journal of Coastal Research, (1990), 611. Google Scholar

[11]

O. Guélorget and J.-P. Perthuisot., Le confinement, paramètre essentiel de la dynamique biologique du domaine paralique., Sciences Géologiques, (1983), 25. Google Scholar

[12]

O. Guélorget and J.-P. Perthuisot., Le domaine paralique. Expressions géologiques biologique, et économique du confinement., Presse de l'école normale supérieure 16-1983, (1983), 16. Google Scholar

[13]

L. Halpern., Artificial boundary conditions for the linear advection diffusion equation., Math. Comp., (1986), 425. Google Scholar

[14]

F. Hecht, O. Pironneau, and A. Le Hyaric., FreeFem++ manual., 2004., (). Google Scholar

[15]

L. Halpern and M. Schatzman., Artificial boundary conditions for incompressible viscous flows., SIAM J. Math. Anal., (1989), 308. Google Scholar

[16]

A. Ibrahim, O. Guélorget, G. G. Frisoni, J. M. Rouchy, A. Martin, and J.-P. Perthuisot., Expressions hydrochimiques, biologiques et sédimentologiques des gradients de confinement dans la lagune de guemsah (golfe de suez, egypte)., Oceanologica Acta, (1985), 303. Google Scholar

[17]

F. Redois and J.-P. Debenay., Influence du confinement sur la répartition des foraminifères benthiques : exemples de l'estran d'une ria mésotidale de Bretagne méridionale., Revue de Paléobiologie, (1996), 243. Google Scholar

[18]

D. Tagliapietra, M. Sigovini, and V. Ghirardini., A review of terms and definitions to categorise estuaries, lagoons and associated environments., Marine and Freshwater Research, (2009), 497. Google Scholar

[1]

Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571

[2]

T. J. Newman. Modeling Multicellular Systems Using Subcellular Elements. Mathematical Biosciences & Engineering, 2005, 2 (3) : 613-624. doi: 10.3934/mbe.2005.2.613

[3]

Minoo Kamrani. Numerical solution of partial differential equations with stochastic Neumann boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019061

[4]

Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768

[5]

Mats Gyllenberg, Yi Wang. Periodic tridiagonal systems modeling competitive-cooperative ecological interactions. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 289-298. doi: 10.3934/dcdsb.2005.5.289

[6]

Hirotoshi Kuroda, Noriaki Yamazaki. Approximating problems of vectorial singular diffusion equations with inhomogeneous terms and numerical simulations. Conference Publications, 2009, 2009 (Special) : 486-495. doi: 10.3934/proc.2009.2009.486

[7]

Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic & Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463

[8]

Tomás Caraballo, P.E. Kloeden, Pedro Marín-Rubio. Numerical and finite delay approximations of attractors for logistic differential-integral equations with infinite delay. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 177-196. doi: 10.3934/dcds.2007.19.177

[9]

Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561

[10]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[11]

Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057

[12]

Joseph D. Fehribach. Using numerical experiments to discover theorems in differential equations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (4) : 495-504. doi: 10.3934/dcdsb.2003.3.495

[13]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[14]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[15]

Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143-164. doi: 10.3934/mbe.2017010

[16]

Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842

[17]

Laurent Boudin, Bérénice Grec, Francesco Salvarani. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1427-1440. doi: 10.3934/dcdsb.2012.17.1427

[18]

Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 89-99. doi: 10.3934/proc.1998.1998.89

[19]

Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153

[20]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

 Impact Factor: 

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]