• Previous Article
    Initial boundary value problem for the singularly perturbed Boussinesq-type equation
  • PROC Home
  • This Issue
  • Next Article
    Control of attractors in nonlinear dynamical systems using external noise: Effects of noise on synchronization phenomena
2013, 2013(special): 695-707. doi: 10.3934/proc.2013.2013.695

Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents

1. 

Department of Mathematics, University of Ulsan, Ulsan 680-749, South Korea

2. 

Department of Mathematics Education, Sangmyung University, Seoul 110-743, South Korea

Received  August 2012 Revised  March 2013 Published  November 2013

We study the following nonlinear problem \begin{equation*} -div(w(x)|\nabla u|^{p(x)-2}\nabla u)=\lambda f(x,u)\quad in \Omega \end{equation*} which is subject to Dirichlet boundary condition. Under suitable conditions on $w$ and $f$, employing the variational methods, we show the existence of solutions for the above problem in the weighted variable exponent Lebesgue-Sobolev spaces. Also we obtain the positivity of the infimum eigenvalue for the problem.
Citation: Inbo Sim, Yun-Ho Kim. Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents. Conference Publications, 2013, 2013 (special) : 695-707. doi: 10.3934/proc.2013.2013.695
References:
[1]

T. Bartsch, Z. Liu, On a superlinear elliptic $p$-Laplacian equation,, J. Differential Equations 198 (2004), (2004), 149.   Google Scholar

[2]

N. Benouhiba, On the eigenvalues of weighted $p(x)$-Laplacian on $\mathbbR^N$,, Nonlinear Anal. 74 (2011), (2011), 235.   Google Scholar

[3]

Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math. 66 (2006), (2006), 1383.   Google Scholar

[4]

L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$,, Math. Nachr. 268 (2004), (2004), 31.   Google Scholar

[5]

G. Dinca, P. Jebelean, J. Mawhin, Variational and topological methods for Dirichlet problems with $p$-Laplacian,, Portugal. Math. 58 (2001), (2001), 339.   Google Scholar

[6]

P. Drábek, A. Kufner, F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities,, de Gruyter, (1997).   Google Scholar

[7]

P. De Napoli, M. Mariani, Mountain pass solutions to equations of $p$-Laplacian type,, Nonlinear Anal. 54 (2003), (2003), 1205.   Google Scholar

[8]

X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl. 263 (2001), (2001), 424.   Google Scholar

[9]

X.L. Fan, Q.H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem,, Nonlinear Anal. 52 (2003), (2003), 1843.   Google Scholar

[10]

X. Fan, Q. Zhang, D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem,, J. Math. Anal. Appl. 302 (2005), (2005), 306.   Google Scholar

[11]

H. Galewski, On the continuity of the Nemyskij operator between the spaces $L^{p_1(x)}$ and $L^{p_2(x)}$,, Georgian Math. Journal. 13 (2006), (2006), 261.   Google Scholar

[12]

P. Harjulehto, Variable exponent Sobolev spaces with zero boundary values,, Math. Bohem. 132 (2007), (2007), 125.   Google Scholar

[13]

Y. Huang, Existence of positive solutions for a class of the $p$-Laplace equations,, J. Austral. Math. Soc. Sect. B 36 (1994), (1994), 249.   Google Scholar

[14]

Y.-H. Kim, L. Wang, C. Zhang, Global bifurcation for a class of degenerate elliptic equations with variable exponents,, J. Math. Anal. Appl. 371 (2010), (2010), 624.   Google Scholar

[15]

O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, Czechoslovak Math. J. 41 (1991), (1991), 592.   Google Scholar

[16]

J. Musielak, Orlicz spaces and modular spaces,, Springer-Verlag, (1983).   Google Scholar

[17]

K. Rajagopal, M. R.užička, Mathematical modeling of electrorheological materials,, Continuum Mech. Thermodyn. 13 (2001), (2001), 59.   Google Scholar

[18]

M. R.užička, Electrorheological Fluids: Modeling and Mathematical Theory, in:, Lecture Notes in Mathematics, (1748).   Google Scholar

[19]

A. Szulkin, M.Willem, Eigenvalue problem with indefinite weight,, Studia Math. 135 (1995), (1995), 191.   Google Scholar

[20]

M. Willem, Minimax Theorems,, Birkhauser, (1996).   Google Scholar

[21]

V.V. Zhikov, On some variational problems,, Russ. J. Math. Phys. 5 (1997), (1997), 105.   Google Scholar

[22]

V.V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 226 (2004), (2004), 67.   Google Scholar

show all references

References:
[1]

T. Bartsch, Z. Liu, On a superlinear elliptic $p$-Laplacian equation,, J. Differential Equations 198 (2004), (2004), 149.   Google Scholar

[2]

N. Benouhiba, On the eigenvalues of weighted $p(x)$-Laplacian on $\mathbbR^N$,, Nonlinear Anal. 74 (2011), (2011), 235.   Google Scholar

[3]

Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration,, SIAM J. Appl. Math. 66 (2006), (2006), 1383.   Google Scholar

[4]

L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces $L^{p(\cdot)}$ and $W^{k,p(\cdot)}$,, Math. Nachr. 268 (2004), (2004), 31.   Google Scholar

[5]

G. Dinca, P. Jebelean, J. Mawhin, Variational and topological methods for Dirichlet problems with $p$-Laplacian,, Portugal. Math. 58 (2001), (2001), 339.   Google Scholar

[6]

P. Drábek, A. Kufner, F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singularities,, de Gruyter, (1997).   Google Scholar

[7]

P. De Napoli, M. Mariani, Mountain pass solutions to equations of $p$-Laplacian type,, Nonlinear Anal. 54 (2003), (2003), 1205.   Google Scholar

[8]

X. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$,, J. Math. Anal. Appl. 263 (2001), (2001), 424.   Google Scholar

[9]

X.L. Fan, Q.H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem,, Nonlinear Anal. 52 (2003), (2003), 1843.   Google Scholar

[10]

X. Fan, Q. Zhang, D. Zhao, Eigenvalues of $p(x)$-Laplacian Dirichlet problem,, J. Math. Anal. Appl. 302 (2005), (2005), 306.   Google Scholar

[11]

H. Galewski, On the continuity of the Nemyskij operator between the spaces $L^{p_1(x)}$ and $L^{p_2(x)}$,, Georgian Math. Journal. 13 (2006), (2006), 261.   Google Scholar

[12]

P. Harjulehto, Variable exponent Sobolev spaces with zero boundary values,, Math. Bohem. 132 (2007), (2007), 125.   Google Scholar

[13]

Y. Huang, Existence of positive solutions for a class of the $p$-Laplace equations,, J. Austral. Math. Soc. Sect. B 36 (1994), (1994), 249.   Google Scholar

[14]

Y.-H. Kim, L. Wang, C. Zhang, Global bifurcation for a class of degenerate elliptic equations with variable exponents,, J. Math. Anal. Appl. 371 (2010), (2010), 624.   Google Scholar

[15]

O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k,p(x)}$,, Czechoslovak Math. J. 41 (1991), (1991), 592.   Google Scholar

[16]

J. Musielak, Orlicz spaces and modular spaces,, Springer-Verlag, (1983).   Google Scholar

[17]

K. Rajagopal, M. R.užička, Mathematical modeling of electrorheological materials,, Continuum Mech. Thermodyn. 13 (2001), (2001), 59.   Google Scholar

[18]

M. R.užička, Electrorheological Fluids: Modeling and Mathematical Theory, in:, Lecture Notes in Mathematics, (1748).   Google Scholar

[19]

A. Szulkin, M.Willem, Eigenvalue problem with indefinite weight,, Studia Math. 135 (1995), (1995), 191.   Google Scholar

[20]

M. Willem, Minimax Theorems,, Birkhauser, (1996).   Google Scholar

[21]

V.V. Zhikov, On some variational problems,, Russ. J. Math. Phys. 5 (1997), (1997), 105.   Google Scholar

[22]

V.V. Zhikov, On the density of smooth functions in Sobolev-Orlicz spaces,, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 226 (2004), (2004), 67.   Google Scholar

[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[7]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[8]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[9]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[10]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[13]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

 Impact Factor: 

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]