    2013, 2013(special): 729-736. doi: 10.3934/proc.2013.2013.729

## Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data

 1 Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585

Received  August 2012 Revised  March 2013 Published  November 2013

Let $\Omega \subset \mathbb{R}^2$ be a smooth bounded domain and let $\Gamma = \left \{ p_1, \cdots, p_N \right \} \subset \Omega$ be the set of prescribed points. Consider the Liouville type equation $-\delta u = \lambda \Pi_{j = 1}^{N} |x - p_j|^{2\alpha_j} V(x) e^u \quad \mbox{in} \; \Omega, \quad u = 0 \quad \mbox{on} \; \partial \Omega,$ where $\alpha_j \; (j=1,\cdots, N)$ are positive numbers, $V(x) > 0$ is a given smooth function on $\bar{\Omega}$, and $\lambda > 0$ is a parameter. Let $\{ u_n \}$ be a blowing up solution sequence for $\lambda = \lambda_n \downarrow 0$ having the $m$-points blow up set $S = \{ q_1, \cdots, q_m \} \subset \Omega$, i.e., $\lambda_n \prod_{j = 1}^N |x - p_j|^{2 \alpha_j} V(x) e^{u_n} dx \rightharpoonup \sum_{i=1}^m b_i \delta_{q_i}$ in the sense of measures, where $b_i = 8\pi$ if $q_i \notin \Gamma$, $b_i = 8\pi(1 + \alpha_j)$ if $q_i = p_j$ for some $p_j \in \Gamma$. We show that the number of blow up points $m$ is less than or equal to the Morse index of $u_n$ for $n$ sufficiently large, provided $\alpha_j \in (0,+\infty) \setminus \mathbb{N}$ for all $j = 1, \cdots, N$. This is a generalization of the result  in which nonsingular case ($\alpha_j = 0$ for all $j$) was studied.
Citation: Futoshi Takahashi. Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data. Conference Publications, 2013, 2013 (special) : 729-736. doi: 10.3934/proc.2013.2013.729
##### References:
  D. Bartolucci, C.C. Chen, C.S. Lin and G. Tarantello:, Profile of blow-up solutions to mean field equations with singular data,, Comm. Partial Differential Equations 29 no. 7-8 (2004), 29 (2004), 7. Google Scholar  D. Bartolucci, and G. Tarantello:, The Liouville equation with singular data: a concentration-compactness principle via a local representation formula,, J. Differential Equations 185 (2002), 185 (2002), 161. Google Scholar  D. Bartolucci, and G. Tarantello:, Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory,, Comm. Math. Pfys. 229 (2002), 229 (2002), 3. Google Scholar  H. Brezis, and F. Merle:, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimensions,, Comm. Partial Differential Equations 16 (1991), 16 (1991), 1223. Google Scholar  P. Esposito:, A Class of Liouville-Type Equations Arising in Chern-Simons Vortex Theory: Asymptotics and Construction of Blowing Up Solutions,, Ph. D. thesis, (2003).   Google Scholar  P. Esposito:, Blowup solutions for a Liouville equation with singular data,, SIAM. J. Math. Anal. 36 (2005), 36 (2005), 1310. Google Scholar  P. Esposito:, Blowup solutions for a Liouville equation with singular data,, in Proceedings of the International Conference, (2005), 61. Google Scholar  Y. Y. Li, and I. Shafrir:, Blow-up analysis for solutions of $-\Delta u = V e^u$ in dimension two,, Indiana Univ. Math. J. 43 (1994), 43 (1994), 1255. Google Scholar  L. Ma, and J. Wei:, Convergence for a Liouville equation,, Comment. Math. Helv. 76 (2001), 76 (2001), 506. Google Scholar  K. Nagasaki, and T. Suzuki:, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities,, Asymptotic Anal. 3 (1990), 3 (1990), 173. Google Scholar  J. Prajapat, and G. Tarantello:, On a class of elliptic problems in $\mathbbR^2$: symmetry and uniqueness results,, Proc. Roy. Soc. Edinburgh 131 A (2001), 131 A (2001), 967. Google Scholar  F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation in two-dimension,, Advances in Nonlinear Stud. 12 no.1, 12 (2012), 115. Google Scholar  F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation : inhomogeneous case,, submitted., ().   Google Scholar  G. Tarantello:, " Selfdual Gauge Field Vortices: An Analytical Approach,", Progress in Nonlinear Differential Equations and Their Applications 72, (2008). Google Scholar  Y. Yang:, "Solitons in Field Theory and Nonlinear Analysis,", Springer Monographs in Mathematics, (2001). Google Scholar

show all references

##### References:
  D. Bartolucci, C.C. Chen, C.S. Lin and G. Tarantello:, Profile of blow-up solutions to mean field equations with singular data,, Comm. Partial Differential Equations 29 no. 7-8 (2004), 29 (2004), 7. Google Scholar  D. Bartolucci, and G. Tarantello:, The Liouville equation with singular data: a concentration-compactness principle via a local representation formula,, J. Differential Equations 185 (2002), 185 (2002), 161. Google Scholar  D. Bartolucci, and G. Tarantello:, Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory,, Comm. Math. Pfys. 229 (2002), 229 (2002), 3. Google Scholar  H. Brezis, and F. Merle:, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimensions,, Comm. Partial Differential Equations 16 (1991), 16 (1991), 1223. Google Scholar  P. Esposito:, A Class of Liouville-Type Equations Arising in Chern-Simons Vortex Theory: Asymptotics and Construction of Blowing Up Solutions,, Ph. D. thesis, (2003).   Google Scholar  P. Esposito:, Blowup solutions for a Liouville equation with singular data,, SIAM. J. Math. Anal. 36 (2005), 36 (2005), 1310. Google Scholar  P. Esposito:, Blowup solutions for a Liouville equation with singular data,, in Proceedings of the International Conference, (2005), 61. Google Scholar  Y. Y. Li, and I. Shafrir:, Blow-up analysis for solutions of $-\Delta u = V e^u$ in dimension two,, Indiana Univ. Math. J. 43 (1994), 43 (1994), 1255. Google Scholar  L. Ma, and J. Wei:, Convergence for a Liouville equation,, Comment. Math. Helv. 76 (2001), 76 (2001), 506. Google Scholar  K. Nagasaki, and T. Suzuki:, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities,, Asymptotic Anal. 3 (1990), 3 (1990), 173. Google Scholar  J. Prajapat, and G. Tarantello:, On a class of elliptic problems in $\mathbbR^2$: symmetry and uniqueness results,, Proc. Roy. Soc. Edinburgh 131 A (2001), 131 A (2001), 967. Google Scholar  F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation in two-dimension,, Advances in Nonlinear Stud. 12 no.1, 12 (2012), 115. Google Scholar  F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation : inhomogeneous case,, submitted., ().   Google Scholar  G. Tarantello:, " Selfdual Gauge Field Vortices: An Analytical Approach,", Progress in Nonlinear Differential Equations and Their Applications 72, (2008). Google Scholar  Y. Yang:, "Solitons in Field Theory and Nonlinear Analysis,", Springer Monographs in Mathematics, (2001). Google Scholar
  Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264  Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259  Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216  Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262  Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345  Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276  Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243  Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305  Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255  Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453  Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447  Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026  Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273  Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261  Aihua Fan, Jörg Schmeling, Weixiao Shen. $L^\infty$-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363  Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291  Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056  Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076  Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452  Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

Impact Factor: