2013, 2013(special): 729-736. doi: 10.3934/proc.2013.2013.729

Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data

1. 

Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585

Received  August 2012 Revised  March 2013 Published  November 2013

Let $\Omega \subset \mathbb{R}^2$ be a smooth bounded domain and let $\Gamma = \left \{ p_1, \cdots, p_N \right \} \subset \Omega$ be the set of prescribed points. Consider the Liouville type equation \[ -\delta u = \lambda \Pi_{j = 1}^{N} |x - p_j|^{2\alpha_j} V(x) e^u \quad \mbox{in} \; \Omega, \quad u = 0 \quad \mbox{on} \; \partial \Omega, \] where $\alpha_j \; (j=1,\cdots, N)$ are positive numbers, $V(x) > 0$ is a given smooth function on $\bar{\Omega}$, and $\lambda > 0$ is a parameter. Let $\{ u_n \}$ be a blowing up solution sequence for $\lambda = \lambda_n \downarrow 0$ having the $m$-points blow up set $S = \{ q_1, \cdots, q_m \} \subset \Omega$, i.e., \[ \lambda_n \prod_{j = 1}^N |x - p_j|^{2 \alpha_j} V(x) e^{u_n} dx \rightharpoonup \sum_{i=1}^m b_i \delta_{q_i} \] in the sense of measures, where $b_i = 8\pi$ if $q_i \notin \Gamma$, $b_i = 8\pi(1 + \alpha_j)$ if $q_i = p_j$ for some $p_j \in \Gamma$. We show that the number of blow up points $m$ is less than or equal to the Morse index of $u_n$ for $n$ sufficiently large, provided $\alpha_j \in (0,+\infty) \setminus \mathbb{N}$ for all $j = 1, \cdots, N$. This is a generalization of the result [13] in which nonsingular case ($\alpha_j = 0$ for all $j$) was studied.
Citation: Futoshi Takahashi. Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data. Conference Publications, 2013, 2013 (special) : 729-736. doi: 10.3934/proc.2013.2013.729
References:
[1]

D. Bartolucci, C.C. Chen, C.S. Lin and G. Tarantello:, Profile of blow-up solutions to mean field equations with singular data,, Comm. Partial Differential Equations 29 no. 7-8 (2004), 29 (2004), 7.   Google Scholar

[2]

D. Bartolucci, and G. Tarantello:, The Liouville equation with singular data: a concentration-compactness principle via a local representation formula,, J. Differential Equations 185 (2002), 185 (2002), 161.   Google Scholar

[3]

D. Bartolucci, and G. Tarantello:, Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory,, Comm. Math. Pfys. 229 (2002), 229 (2002), 3.   Google Scholar

[4]

H. Brezis, and F. Merle:, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimensions,, Comm. Partial Differential Equations 16 (1991), 16 (1991), 1223.   Google Scholar

[5]

P. Esposito:, A Class of Liouville-Type Equations Arising in Chern-Simons Vortex Theory: Asymptotics and Construction of Blowing Up Solutions,, Ph. D. thesis, (2003).   Google Scholar

[6]

P. Esposito:, Blowup solutions for a Liouville equation with singular data,, SIAM. J. Math. Anal. 36 (2005), 36 (2005), 1310.   Google Scholar

[7]

P. Esposito:, Blowup solutions for a Liouville equation with singular data,, in Proceedings of the International Conference, (2005), 61.   Google Scholar

[8]

Y. Y. Li, and I. Shafrir:, Blow-up analysis for solutions of $-\Delta u = V e^u$ in dimension two,, Indiana Univ. Math. J. 43 (1994), 43 (1994), 1255.   Google Scholar

[9]

L. Ma, and J. Wei:, Convergence for a Liouville equation,, Comment. Math. Helv. 76 (2001), 76 (2001), 506.   Google Scholar

[10]

K. Nagasaki, and T. Suzuki:, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities,, Asymptotic Anal. 3 (1990), 3 (1990), 173.   Google Scholar

[11]

J. Prajapat, and G. Tarantello:, On a class of elliptic problems in $\mathbbR^2$: symmetry and uniqueness results,, Proc. Roy. Soc. Edinburgh 131 A (2001), 131 A (2001), 967.   Google Scholar

[12]

F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation in two-dimension,, Advances in Nonlinear Stud. 12 no.1, 12 (2012), 115.   Google Scholar

[13]

F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation : inhomogeneous case,, submitted., ().   Google Scholar

[14]

G. Tarantello:, " Selfdual Gauge Field Vortices: An Analytical Approach,", Progress in Nonlinear Differential Equations and Their Applications 72, (2008).   Google Scholar

[15]

Y. Yang:, "Solitons in Field Theory and Nonlinear Analysis,", Springer Monographs in Mathematics, (2001).   Google Scholar

show all references

References:
[1]

D. Bartolucci, C.C. Chen, C.S. Lin and G. Tarantello:, Profile of blow-up solutions to mean field equations with singular data,, Comm. Partial Differential Equations 29 no. 7-8 (2004), 29 (2004), 7.   Google Scholar

[2]

D. Bartolucci, and G. Tarantello:, The Liouville equation with singular data: a concentration-compactness principle via a local representation formula,, J. Differential Equations 185 (2002), 185 (2002), 161.   Google Scholar

[3]

D. Bartolucci, and G. Tarantello:, Liouville type equations with singular data and their applications to periodic multivortices for the Electroweak Theory,, Comm. Math. Pfys. 229 (2002), 229 (2002), 3.   Google Scholar

[4]

H. Brezis, and F. Merle:, Uniform estimates and blow-up behavior for solutions of $-\Delta u = V(x)e^u$ in two dimensions,, Comm. Partial Differential Equations 16 (1991), 16 (1991), 1223.   Google Scholar

[5]

P. Esposito:, A Class of Liouville-Type Equations Arising in Chern-Simons Vortex Theory: Asymptotics and Construction of Blowing Up Solutions,, Ph. D. thesis, (2003).   Google Scholar

[6]

P. Esposito:, Blowup solutions for a Liouville equation with singular data,, SIAM. J. Math. Anal. 36 (2005), 36 (2005), 1310.   Google Scholar

[7]

P. Esposito:, Blowup solutions for a Liouville equation with singular data,, in Proceedings of the International Conference, (2005), 61.   Google Scholar

[8]

Y. Y. Li, and I. Shafrir:, Blow-up analysis for solutions of $-\Delta u = V e^u$ in dimension two,, Indiana Univ. Math. J. 43 (1994), 43 (1994), 1255.   Google Scholar

[9]

L. Ma, and J. Wei:, Convergence for a Liouville equation,, Comment. Math. Helv. 76 (2001), 76 (2001), 506.   Google Scholar

[10]

K. Nagasaki, and T. Suzuki:, Asymptotic analysis for two-dimensional elliptic eigenvalue problems with exponentially dominated nonlinearities,, Asymptotic Anal. 3 (1990), 3 (1990), 173.   Google Scholar

[11]

J. Prajapat, and G. Tarantello:, On a class of elliptic problems in $\mathbbR^2$: symmetry and uniqueness results,, Proc. Roy. Soc. Edinburgh 131 A (2001), 131 A (2001), 967.   Google Scholar

[12]

F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation in two-dimension,, Advances in Nonlinear Stud. 12 no.1, 12 (2012), 115.   Google Scholar

[13]

F. Takahashi:, Blow up points and the Morse indices of solutions to the Liouville equation : inhomogeneous case,, submitted., ().   Google Scholar

[14]

G. Tarantello:, " Selfdual Gauge Field Vortices: An Analytical Approach,", Progress in Nonlinear Differential Equations and Their Applications 72, (2008).   Google Scholar

[15]

Y. Yang:, "Solitons in Field Theory and Nonlinear Analysis,", Springer Monographs in Mathematics, (2001).   Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[2]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[5]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[8]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[9]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[12]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[13]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[16]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[19]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[20]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

 Impact Factor: 

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]