-
Previous Article
Modeling the thermal conductance of phononic crystal plates
- PROC Home
- This Issue
-
Next Article
Validity and dynamics in the nonlinearly excited 6th-order phase equation
Morse indices and the number of blow up points of blowing-up solutions for a Liouville equation with singular data
1. | Department of Mathematics, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 |
References:
show all references
References:
[1] |
Peter Howard, Alim Sukhtayev. The Maslov and Morse indices for Sturm-Liouville systems on the half-line. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 983-1012. doi: 10.3934/dcds.2020068 |
[2] |
D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure and Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499 |
[3] |
Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure and Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183 |
[4] |
Linfeng Mei, Zongming Guo. Morse indices and symmetry breaking for the Gelfand equation in expanding annuli. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1509-1523. doi: 10.3934/dcdsb.2017072 |
[5] |
Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617 |
[6] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control and Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[7] |
Wenhui Chen, Alessandro Palmieri. A blow – up result for the semilinear Moore – Gibson – Thompson equation with nonlinearity of derivative type in the conservative case. Evolution Equations and Control Theory, 2021, 10 (4) : 673-687. doi: 10.3934/eect.2020085 |
[8] |
Björn Sandstede, Arnd Scheel. Relative Morse indices, Fredholm indices, and group velocities. Discrete and Continuous Dynamical Systems, 2008, 20 (1) : 139-158. doi: 10.3934/dcds.2008.20.139 |
[9] |
Asma Azaiez. Refined regularity for the blow-up set at non characteristic points for the vector-valued semilinear wave equation. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2397-2408. doi: 10.3934/cpaa.2019108 |
[10] |
Joachim von Below, Gaëlle Pincet Mailly, Jean-François Rault. Growth order and blow up points for the parabolic Burgers' equation under dynamical boundary conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 825-836. doi: 10.3934/dcdss.2013.6.825 |
[11] |
Yohei Fujishima. On the effect of higher order derivatives of initial data on the blow-up set for a semilinear heat equation. Communications on Pure and Applied Analysis, 2018, 17 (2) : 449-475. doi: 10.3934/cpaa.2018025 |
[12] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011 |
[13] |
Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 |
[14] |
Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure and Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697 |
[15] |
Chiun-Chuan Chen, Chang-Shou Lin. Mean field equations of Liouville type with singular data: Sharper estimates. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1237-1272. doi: 10.3934/dcds.2010.28.1237 |
[16] |
Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086 |
[17] |
Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 |
[18] |
Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657 |
[19] |
Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure and Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621 |
[20] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]