2013, 2013(special): 737-746. doi: 10.3934/proc.2013.2013.737

Modeling the thermal conductance of phononic crystal plates

1. 

Rudolf Peierls Center for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom

2. 

Department of Electrical Engineering and Computer Science, University of Applied Sciences Zittau/Görlitz, D-02826 Görlitz, Germany

Received  September 2012 Published  November 2013

The paper presents a model to compute the phonon thermal conductance of phononic crystal plates. The goal is the optimization of the figure of merit for these materials, which is the primary criterion for the efficiency of a thermoelectric device. Values of about three or higher allow for the construction of thermoelectric generators based on the Seebeck effect, which are more efficient than conventional electrical generators. The paper introduces a numerical method to optimize the phonon thermal conductance of a given phononic material by varying the geometrical structure with respect to the width and thickness of a sample as well as pore size, shape, and mass density.
Citation: Stefanie Thiem, Jörg Lässig. Modeling the thermal conductance of phononic crystal plates. Conference Publications, 2013, 2013 (special) : 737-746. doi: 10.3934/proc.2013.2013.737
References:
[1]

D. Y. Chung, T. Hogan, J. Schindler, L. Iordarridis, P. Brazis, C. R. Kannewurf, B. Chen, C. Uher, and M.G. Kanatzidis, Complex bismuth chalcogenides as thermoelectrics, 16th International Conference on Thermoelectrics, 1 (1997), 459-462.

[2]

A. Grigorevskii, V. Grigorevskii, and S. Nikitov, Dispersion curves of bulk acoustic waves in an elastic body with a two-dimensional periodic structure of circular holes, Acoustical Physics, 54 (2008), 289-293.

[3]

T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Quantum dot superlattice thermoelectric materials and devices, Science, 297 (2002), 2229-2232.

[4]

A. I. Hochbaum, C. Renkun, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature, 451 (2008), 163-167.

[5]

J.-C. Hsu and T.-T. Wu, Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates, Physical Review B, 74 (2006), 144303.

[6]

W. Kuang, Z. Hou and Y. Liu, The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals, Physics Letters A, 332 (2004), 481-490.

[7]

M. S. Kushwaha, P. Halevi, G. Martínez, I. Dobrzynski, and B. Djafari Rouhani, Theory of acoustic band structure of periodic elastic composites, Physical Review B, 49 (1994), 2313-2322.

[8]

N. Mingo, Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations, Physical Review B, 68 (2003), 113308.

[9]

G. G. Samsonidze., R. Saito, A. Jorio, M. A. Pimenta, A. G. Souza Filho, A. Grüneis, G. Dresselhaus, and M. S. Dresselhaus, The concept of cutting lines in carbon nanotube science, Journal of Nanoscience and Nanotechnology, 3 (2003), 431-458.

[10]

G. A. Slack, New materials and performance limits for thermoelectric cooling, in ''CRC Handbook of Thermoelectrics'' (ed. D. M. Rowe), CRC Press, (1995), 407-440.

[11]

Y. Tanaka, Y. Tomoyasu, and S. Tamura, Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch, Physical Review B, 62 (2000), 7387-7392.

[12]

J. Tang, H.-T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell, and P. Yang, Holey silicon as an efficient thermoelectric material, Nano Letters, 10 (2010), 4279-4283.

[13]

J. O. Vasseur, P. A. Deymier, B. Djafari Rouhani, Y. Pennec, and A.-C. Hladky Hennion, Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates, Physical Review B, 77 (2008), 085415.

[14]

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413 (2001), 597-602.

show all references

References:
[1]

D. Y. Chung, T. Hogan, J. Schindler, L. Iordarridis, P. Brazis, C. R. Kannewurf, B. Chen, C. Uher, and M.G. Kanatzidis, Complex bismuth chalcogenides as thermoelectrics, 16th International Conference on Thermoelectrics, 1 (1997), 459-462.

[2]

A. Grigorevskii, V. Grigorevskii, and S. Nikitov, Dispersion curves of bulk acoustic waves in an elastic body with a two-dimensional periodic structure of circular holes, Acoustical Physics, 54 (2008), 289-293.

[3]

T. C. Harman, P. J. Taylor, M. P. Walsh, and B. E. LaForge, Quantum dot superlattice thermoelectric materials and devices, Science, 297 (2002), 2229-2232.

[4]

A. I. Hochbaum, C. Renkun, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature, 451 (2008), 163-167.

[5]

J.-C. Hsu and T.-T. Wu, Efficient formulation for band-structure calculations of two-dimensional phononic-crystal plates, Physical Review B, 74 (2006), 144303.

[6]

W. Kuang, Z. Hou and Y. Liu, The effects of shapes and symmetries of scatterers on the phononic band gap in 2D phononic crystals, Physics Letters A, 332 (2004), 481-490.

[7]

M. S. Kushwaha, P. Halevi, G. Martínez, I. Dobrzynski, and B. Djafari Rouhani, Theory of acoustic band structure of periodic elastic composites, Physical Review B, 49 (1994), 2313-2322.

[8]

N. Mingo, Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations, Physical Review B, 68 (2003), 113308.

[9]

G. G. Samsonidze., R. Saito, A. Jorio, M. A. Pimenta, A. G. Souza Filho, A. Grüneis, G. Dresselhaus, and M. S. Dresselhaus, The concept of cutting lines in carbon nanotube science, Journal of Nanoscience and Nanotechnology, 3 (2003), 431-458.

[10]

G. A. Slack, New materials and performance limits for thermoelectric cooling, in ''CRC Handbook of Thermoelectrics'' (ed. D. M. Rowe), CRC Press, (1995), 407-440.

[11]

Y. Tanaka, Y. Tomoyasu, and S. Tamura, Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch, Physical Review B, 62 (2000), 7387-7392.

[12]

J. Tang, H.-T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell, and P. Yang, Holey silicon as an efficient thermoelectric material, Nano Letters, 10 (2010), 4279-4283.

[13]

J. O. Vasseur, P. A. Deymier, B. Djafari Rouhani, Y. Pennec, and A.-C. Hladky Hennion, Absolute forbidden bands and waveguiding in two-dimensional phononic crystal plates, Physical Review B, 77 (2008), 085415.

[14]

R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413 (2001), 597-602.

[1]

M. Eller, Roberto Triggiani. Exact/approximate controllability of thermoelastic plates with variable thermal coefficients. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 283-302. doi: 10.3934/dcds.2001.7.283

[2]

Claude Stolz. On estimation of internal state by an optimal control approach for elastoplastic material. Discrete and Continuous Dynamical Systems - S, 2016, 9 (2) : 599-611. doi: 10.3934/dcdss.2016014

[3]

Liu Rui. The explicit nonlinear wave solutions of the generalized $b$-equation. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1029-1047. doi: 10.3934/cpaa.2013.12.1029

[4]

R. Bartolo, Anna Maria Candela, J.L. Flores, Addolorata Salvatore. Periodic trajectories in plane wave type spacetimes. Conference Publications, 2005, 2005 (Special) : 77-83. doi: 10.3934/proc.2005.2005.77

[5]

Charles Amorim, Miguel Loayza, Marko A. Rojas-Medar. The nonstationary flows of micropolar fluids with thermal convection: An iterative approach. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2509-2535. doi: 10.3934/dcdsb.2020193

[6]

Rúben Sousa, Semyon Yakubovich. The spectral expansion approach to index transforms and connections with the theory of diffusion processes. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2351-2378. doi: 10.3934/cpaa.2018112

[7]

Naoufel Ben Abdallah, Antoine Mellet, Marjolaine Puel. Fractional diffusion limit for collisional kinetic equations: A Hilbert expansion approach. Kinetic and Related Models, 2011, 4 (4) : 873-900. doi: 10.3934/krm.2011.4.873

[8]

Eric P. Choate, Hong Zhou. Optimization of electromagnetic wave propagation through a liquid crystal layer. Discrete and Continuous Dynamical Systems - S, 2015, 8 (2) : 303-312. doi: 10.3934/dcdss.2015.8.303

[9]

Chien Hsun Tseng. Analytical modeling of laminated composite plates using Kirchhoff circuit and wave digital filters. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2213-2252. doi: 10.3934/jimo.2019051

[10]

Bendong Lou. Traveling wave solutions of a generalized curvature flow equation in the plane. Conference Publications, 2007, 2007 (Special) : 687-693. doi: 10.3934/proc.2007.2007.687

[11]

Jerry Bona, Jiahong Wu. Temporal growth and eventual periodicity for dispersive wave equations in a quarter plane. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1141-1168. doi: 10.3934/dcds.2009.23.1141

[12]

Brenton LeMesurier. Modeling thermal effects on nonlinear wave motion in biopolymers by a stochastic discrete nonlinear Schrödinger equation with phase damping. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 317-327. doi: 10.3934/dcdss.2008.1.317

[13]

Kazuhiro Kurata, Yuki Osada. Asymptotic expansion of the ground state energy for nonlinear Schrödinger system with three wave interaction. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4239-4251. doi: 10.3934/cpaa.2021157

[14]

Meiling Yang, Yongsheng Li, Zhijun Qiao. Persistence properties and wave-breaking criteria for a generalized two-component rotational b-family system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2475-2493. doi: 10.3934/dcds.2020122

[15]

Kai-Uwe Schmidt, Jonathan Jedwab, Matthew G. Parker. Two binary sequence families with large merit factor. Advances in Mathematics of Communications, 2009, 3 (2) : 135-156. doi: 10.3934/amc.2009.3.135

[16]

Xiao-Hong Liu, Wei Wu. Coerciveness of some merit functions over symmetric cones. Journal of Industrial and Management Optimization, 2009, 5 (3) : 603-613. doi: 10.3934/jimo.2009.5.603

[17]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

[18]

Cheng-Hsiung Hsu, Ting-Hui Yang. Traveling plane wave solutions of delayed lattice differential systems in competitive Lotka-Volterra type. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 111-128. doi: 10.3934/dcdsb.2010.14.111

[19]

Guanqiu Ma, Guanghui Hu. Factorization method for inverse time-harmonic elastic scattering with a single plane wave. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022050

[20]

Benoît Perthame, Delphine Salort. On a voltage-conductance kinetic system for integrate & fire neural networks. Kinetic and Related Models, 2013, 6 (4) : 841-864. doi: 10.3934/krm.2013.6.841

 Impact Factor: 

Metrics

  • PDF downloads (231)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]