• Previous Article
    Existence and uniqueness of entropy solutions to strongly degenerate parabolic equations with discontinuous coefficients
  • PROC Home
  • This Issue
  • Next Article
    Existence of solutions to a multi-point boundary value problem for a second order differential system via the dual least action principle
2013, 2013(special): 771-780. doi: 10.3934/proc.2013.2013.771

On the uniqueness of blow-up solutions of fully nonlinear elliptic equations

1. 

Department of Mathematics, University of Salerno, 84084 Fisciano (SA), Italy, Italy, Italy

Received  September 2012 Revised  December 2012 Published  November 2013

This paper contains new uniqueness results of the boundary blow-up viscosity solutions of second order elliptic equations, generalizing a well known result of Marcus-Veron for the Laplace operator.
Citation: Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771
References:
[1]

X. Cabré and L. A. Caffarelli, Interior $C^{2,\alpha}$ regularity theory for a class of nonconvex fully nonlinear elliptic equations,, J. Math. Pures Appl., 82 (2003), 573.   Google Scholar

[2]

L. A. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations'',, Colloquium Publications 43, (1995).   Google Scholar

[3]

L. A. Caffarelli, M. G. Crandall, M. Kocan and A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients,, Commun. Pure Appl. Math., 49 (1996), 365.   Google Scholar

[4]

I. Capuzzo Dolcetta and A. Vitolo, Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations,, Discrete Contin. Dyn. Syst., 28 (2010), 539.   Google Scholar

[5]

M. G. Crandall, H.Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1.   Google Scholar

[6]

M. G. Crandall, M. Kocan, P. L. Lions and A. Swiech, Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations,, Electron. J. Differ. Equ., 24 (1999), 1.   Google Scholar

[7]

M. G. Crandall and A. Swiech, A note on generalized maximum principles for elliptic and parabolic PDE,, Lecture Notes in Pure and Appl. Math., 235 (2003), 121.   Google Scholar

[8]

F. Da Lio and B. Sirakov, Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations,, J. Eur. Math. Soc. (JEMS), 9 (2007), 317.   Google Scholar

[9]

H. Dong, S. Kim and M. Safonov, On uniqueness boundary blow-up solutions of a class of nonlinear elliptic equations,, Commun. Partial Differ. Equations, 33 (2008), 177.   Google Scholar

[10]

L. Escauriaza, $W^{2,n}$ a priori estimates for solutions to fully nonlinear equations,, Indiana Univ. Math. J., 42 (1993), 413.   Google Scholar

[11]

M. J. Esteban, P. L. Felmer and A. Quaas, Superlinear elliptic equations for fully nonlinear operators without growth restrictions for the data,, Proc. Edinb. Math. Soc., 53 (2010), 125.   Google Scholar

[12]

G. Galise and A. Vitolo, Viscosity Solutions of Uniformly Elliptic Equations without Boundary and Growth Conditions at Infinity,, Int. J. Differ. Equ., 2011 (4537).   Google Scholar

[13]

H. Ishii and P. L. Lions, Viscosity Solutions of Fully Nonlinear Second-Order Elliptic Equations,, J. Differential Equations, 83 (1990), 26.   Google Scholar

[14]

S. Koike, "A Beginners Guide to the Theory of Viscosity Solutions'',, MSJ Memoirs 13, (2004).   Google Scholar

[15]

M. Marcus and L. Véron, Uniqueness of solutions with blowup at the boundary for a class of nonlinear elliptic equations,, C.R. Acad. Sci. Paris, 317 (1993), 559.   Google Scholar

[16]

M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations,, Ann. Inst. Henri Poincaré, 14 (1997), 237.   Google Scholar

[17]

M. H. Protter and H. F. Weinberger, "Maximum principles in Differential Equations'',, Springer-Verlag, (1984).   Google Scholar

[18]

P. Pucci and J. Serrin, "The maximum principles'',, Progress in Nonlinear Differential Equations and Their Applications 73, (2007).   Google Scholar

[19]

B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE,, Arch. Ration. Mech. Anal., 195 (2010), 579.   Google Scholar

[20]

A. Swiech, $W^{1,p}$-interior estimates for solutions of fully nonlinear, uniformly elliptic equations,, Adv. Differential Equations, 2 (1997), 1005.   Google Scholar

show all references

References:
[1]

X. Cabré and L. A. Caffarelli, Interior $C^{2,\alpha}$ regularity theory for a class of nonconvex fully nonlinear elliptic equations,, J. Math. Pures Appl., 82 (2003), 573.   Google Scholar

[2]

L. A. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations'',, Colloquium Publications 43, (1995).   Google Scholar

[3]

L. A. Caffarelli, M. G. Crandall, M. Kocan and A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients,, Commun. Pure Appl. Math., 49 (1996), 365.   Google Scholar

[4]

I. Capuzzo Dolcetta and A. Vitolo, Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations,, Discrete Contin. Dyn. Syst., 28 (2010), 539.   Google Scholar

[5]

M. G. Crandall, H.Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations,, Bull. Amer. Math. Soc., 27 (1992), 1.   Google Scholar

[6]

M. G. Crandall, M. Kocan, P. L. Lions and A. Swiech, Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations,, Electron. J. Differ. Equ., 24 (1999), 1.   Google Scholar

[7]

M. G. Crandall and A. Swiech, A note on generalized maximum principles for elliptic and parabolic PDE,, Lecture Notes in Pure and Appl. Math., 235 (2003), 121.   Google Scholar

[8]

F. Da Lio and B. Sirakov, Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations,, J. Eur. Math. Soc. (JEMS), 9 (2007), 317.   Google Scholar

[9]

H. Dong, S. Kim and M. Safonov, On uniqueness boundary blow-up solutions of a class of nonlinear elliptic equations,, Commun. Partial Differ. Equations, 33 (2008), 177.   Google Scholar

[10]

L. Escauriaza, $W^{2,n}$ a priori estimates for solutions to fully nonlinear equations,, Indiana Univ. Math. J., 42 (1993), 413.   Google Scholar

[11]

M. J. Esteban, P. L. Felmer and A. Quaas, Superlinear elliptic equations for fully nonlinear operators without growth restrictions for the data,, Proc. Edinb. Math. Soc., 53 (2010), 125.   Google Scholar

[12]

G. Galise and A. Vitolo, Viscosity Solutions of Uniformly Elliptic Equations without Boundary and Growth Conditions at Infinity,, Int. J. Differ. Equ., 2011 (4537).   Google Scholar

[13]

H. Ishii and P. L. Lions, Viscosity Solutions of Fully Nonlinear Second-Order Elliptic Equations,, J. Differential Equations, 83 (1990), 26.   Google Scholar

[14]

S. Koike, "A Beginners Guide to the Theory of Viscosity Solutions'',, MSJ Memoirs 13, (2004).   Google Scholar

[15]

M. Marcus and L. Véron, Uniqueness of solutions with blowup at the boundary for a class of nonlinear elliptic equations,, C.R. Acad. Sci. Paris, 317 (1993), 559.   Google Scholar

[16]

M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations,, Ann. Inst. Henri Poincaré, 14 (1997), 237.   Google Scholar

[17]

M. H. Protter and H. F. Weinberger, "Maximum principles in Differential Equations'',, Springer-Verlag, (1984).   Google Scholar

[18]

P. Pucci and J. Serrin, "The maximum principles'',, Progress in Nonlinear Differential Equations and Their Applications 73, (2007).   Google Scholar

[19]

B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE,, Arch. Ration. Mech. Anal., 195 (2010), 579.   Google Scholar

[20]

A. Swiech, $W^{1,p}$-interior estimates for solutions of fully nonlinear, uniformly elliptic equations,, Adv. Differential Equations, 2 (1997), 1005.   Google Scholar

[1]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[2]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[3]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[4]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[5]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[6]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[7]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[11]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[12]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[13]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[14]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[15]

Nahed Naceur, Nour Eddine Alaa, Moez Khenissi, Jean R. Roche. Theoretical and numerical analysis of a class of quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 723-743. doi: 10.3934/dcdss.2020354

[16]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[19]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[20]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

 Impact Factor: 

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (0)

[Back to Top]