[1]
|
X. Cabré and L. A. Caffarelli, Interior $C^{2,\alpha}$ regularity theory for a class of nonconvex fully nonlinear elliptic equations, J. Math. Pures Appl., 82 (2003), 573-612.
|
[2]
|
L. A. Caffarelli and X. Cabré, "Fully Nonlinear Elliptic Equations'', Colloquium Publications 43, American Mathematical Society, Providence, 1995.
|
[3]
|
L. A. Caffarelli, M. G. Crandall, M. Kocan and A. Swiech, On viscosity solutions of fully nonlinear equations with measurable ingredients, Commun. Pure Appl. Math., 49 (1996), 365-398.
|
[4]
|
I. Capuzzo Dolcetta and A. Vitolo, Glaeser's type gradient estimates for non-negative solutions of fully nonlinear elliptic equations, Discrete Contin. Dyn. Syst., 28 (2010), 539-557.
|
[5]
|
M. G. Crandall, H.Ishii and P. L. Lions, User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.
|
[6]
|
M. G. Crandall, M. Kocan, P. L. Lions and A. Swiech, Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations, Electron. J. Differ. Equ., 24 (1999), 1-20.
|
[7]
|
M. G. Crandall and A. Swiech, A note on generalized maximum principles for elliptic and parabolic PDE, Lecture Notes in Pure and Appl. Math., 235 (2003), 121-127.
|
[8]
|
F. Da Lio and B. Sirakov, Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations, J. Eur. Math. Soc. (JEMS), 9 (2007), 317-330.
|
[9]
|
H. Dong, S. Kim and M. Safonov, On uniqueness boundary blow-up solutions of a class of nonlinear elliptic equations, Commun. Partial Differ. Equations, 33 (2008), 177-188.
|
[10]
|
L. Escauriaza, $W^{2,n}$ a priori estimates for solutions to fully nonlinear equations, Indiana Univ. Math. J., 42 (1993), 413-423.
|
[11]
|
M. J. Esteban, P. L. Felmer and A. Quaas, Superlinear elliptic equations for fully nonlinear operators without growth restrictions for the data, Proc. Edinb. Math. Soc., 53 (2010), 125-141.
|
[12]
|
G. Galise and A. Vitolo, Viscosity Solutions of Uniformly Elliptic Equations without Boundary and Growth Conditions at Infinity, Int. J. Differ. Equ., 2011, Article ID 453727, 18 pp.
|
[13]
|
H. Ishii and P. L. Lions, Viscosity Solutions of Fully Nonlinear Second-Order Elliptic Equations, J. Differential Equations, 83 (1990), 26-78.
|
[14]
|
S. Koike, "A Beginners Guide to the Theory of Viscosity Solutions'', MSJ Memoirs 13, Math. Soc. Japan, Tokyo, 2004.
|
[15]
|
M. Marcus and L. Véron, Uniqueness of solutions with blowup at the boundary for a class of nonlinear elliptic equations, C.R. Acad. Sci. Paris, 317 (1993), 559-563.
|
[16]
|
M. Marcus and L. Véron, Uniqueness and asymptotic behavior of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. Henri Poincaré,Analyse non linéaire, 14 (1997), 237-274.
|
[17]
|
M. H. Protter and H. F. Weinberger, "Maximum principles in Differential Equations'', Springer-Verlag, New York, 1984.
|
[18]
|
P. Pucci and J. Serrin, "The maximum principles'', Progress in Nonlinear Differential Equations and Their Applications 73, Birkhäuser Verlag, Basel, 2007.
|
[19]
|
B. Sirakov, Solvability of uniformly elliptic fully nonlinear PDE, Arch. Ration. Mech. Anal., 195 (2010), 579-607.
|
[20]
|
A. Swiech, $W^{1,p}$-interior estimates for solutions of fully nonlinear, uniformly elliptic equations, Adv. Differential Equations, 2 (1997), 1005-1027.
|