2013, 2013(special): 825-835. doi: 10.3934/proc.2013.2013.825

Foam cell formation in atherosclerosis: HDL and macrophage reverse cholesterol transport

1. 

Southern Polytechnic State University, Marietta, GA 30060, United States

2. 

Southern Polytechnic State University, Marietta, GA 30060-2896

3. 

Texas Tech University, Lubbock, TX 79409, United States

Received  September 2012 Revised  December 2012 Published  November 2013

Macrophage derived foam cells are a major constituent of the fatty deposits characterizing the disease atherosclerosis. Foam cells are formed when certain immune cells (macrophages) take on oxidized low density lipoproteins through failed phagocytosis. High density lipoproteins (HDL) are known to have a number of anti-atherogenic effects. One of these stems from their ability to remove excess cellular cholesterol for processing in the liver---a process called reverse cholesterol transport (RCT). HDL perform macrophage RCT by binding to forming foam cells and removing excess lipids by efflux transporters.
    We propose a model of foam cell formation accounting for macrophage RCT. This model is presented as a system of non-linear ordinary differential equations. Motivated by experimental observations regarding time scales for oxidation of lipids and MRCT, we impose a quasi-steady state assumption and analyze the resulting systems of equations. We focus on the existence and stability of equilibrium solutions as determined by the governing parameters with the results interpreted in terms of their potential bio-medical implications.
Citation: Shuai Zhang, L.R. Ritter, A.I. Ibragimov. Foam cell formation in atherosclerosis: HDL and macrophage reverse cholesterol transport. Conference Publications, 2013, 2013 (special) : 825-835. doi: 10.3934/proc.2013.2013.825
References:
[1]

T. Bjornheden, A. Babiy, G. Bondjers, G., and O. Wiklund, Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system,, Atherosclerosis, 123 (1996), 43.   Google Scholar

[2]

C. A. Cobbold, J. A. Sherratt, and S. J. R. Maxwell, Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach,, Bull. Math. Biol., 64 (2002), 65.   Google Scholar

[3]

M. A. Creager, M. A. and Braunwald, E. eds., "Atlas of Vascular Disease,", $2^{nd}$ edition, (2003).   Google Scholar

[4]

A. Daugherty, and D. L. Rateri, Pathogenesis of atherosclerotic lesions,, Cardiol. Rev., 1 (1993), 157.   Google Scholar

[5]

J. Fan, and T. Watanabe, Inflammatory reactions in the pathogenesis of atherosclerosis,, JAT, 10 (2003), 63.   Google Scholar

[6]

R. Franssen, A. W. M. Schimmel, S. I. van Leuven, S. C. S. Wolfkamp, E. S.G. Stroes, and G. M. Dallinga-Thie, In vivo inflammation does not impair ABCA1-mediated cholesterol efflux capacity of HDL,, Cholesterol, 2012 (2012), 1.   Google Scholar

[7]

J. L. Goldstein, Y. K. Ho, S. K. Basu, and M. S. Brown, Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoproteins, producing massive cholesterol deposition,, Proc. Natl. Acad. Sci. USA, 76 (1977), 333.   Google Scholar

[8]

J. Hubbard and B. West, "Differential Equations: A Dynamical Systems Approach,", Springer-Verlag, (1991).   Google Scholar

[9]

A. I. Ibragimov, C. J. McNeal, L. R. Ritter, and J. R. Walton, A mathematical model of atherogenesis as an inflammatory response,, Math. Med. and Biol., 22 (2005), 305.   Google Scholar

[10]

A. I. Ibragimov, C. J. McNeal, L. R. Ritter, and J. R. Walton, Stability analysis of a model of atherogenesis: An energy estimate approach,, J. of Comp. and Math. Meth. in Med., 9 (2008), 121.   Google Scholar

[11]

A. I. Ibragimov, L. R. Ritter, and J. R Walton, Stability analysis of a reaction-diffusion system modeling atherogenesis,, SIAM J. Appl. Math., 70 (2010), 2150.   Google Scholar

[12]

K. U. Ingold, V. W. Bowry, R. Stocker, and C. Walling, Autoxidation and antioxidation by $\alpha$-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein,, Proc. Natl. Acad. Sci. USA, 90 (1993), 45.   Google Scholar

[13]

I. Jailal, G. L. Vega, S. M. and Grundy, Physologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein,, Atherosclerosis, 82 (1990), 185.   Google Scholar

[14]

W. Khovidhunkit, M. S. Kim, R. A. Memon, J. K. Shigenaga, A. H. Moser, K. R. Feingold, and C. Grunfeld, Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host,, Journal of Lipid Research, 45 (2004), 1169.   Google Scholar

[15]

P. Libby, P. M. Ridker, and A. Maseri, Inflammation and atherosclerosis,, Circulation, 105 (2002).   Google Scholar

[16]

L. B. Neilsen, Transfer of low density lipoprotein into the arterial wall and risk of atherosclerosis,, Atherosclerosis, 123 (1996), 1.   Google Scholar

[17]

J. Neuzil, S. R. Thomas, and R. Stocker, Requirement for, promotion, or inhibition by $\alpha$-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation,, Free Radic. Biol. Med., 22 (1997), 57.   Google Scholar

[18]

J. E. Packer, T. F. Slater, and R. L. Willson, Direct observation of a free radical interaction between vitamin E and vitamin C,, Nature, 278 (1979), 737.   Google Scholar

[19]

E. A. Podrez, E. Poliakov, Z. Shen, R. Zhang, Y. Deng, M. Sun, P. J. Finton, L. Shan, B. Gugiu, P. L. Fox, H. F. Hoff, R. G. Salomon, and S. L. Hazen, Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36,, J. Biol. Chem., 277 (2002), 38503.   Google Scholar

[20]

Russell Ross, Cell biology of atherosclerosis,, Annu. Rev. Physiol., 57 (1995), 791.   Google Scholar

[21]

Russell Ross, Atherosclerosis-An inflammatory disease,, N. Engl. J. Med., 340 (1999), 115.   Google Scholar

[22]

D. c. Schwenke, and T. E. Carew, Initiation of atherosclerotic lesions in cholesterol fed rabbits. II Selective retention of LDL vs. Selective increases in LDL permeability in susceptible sites of arteries,, Arteriosclerosis, 9 (1989), 908.   Google Scholar

[23]

H. C. Stary, B. Chandler, S. Glagov, J. R. Guyton, W. Insull Jr., M. E. Rosenfeld, S. A. Schaffer, C. J. Schwartz, W. D. Wagner, and R. W. Wissler, A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Special report.,, Arterioscler. Thromb., 14 (1994), 840.   Google Scholar

[24]

D. Steinberg, Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime,, Nat. Med., 8 (2002), 1211.   Google Scholar

[25]

A. R. Tall, Plasma high density lipoproteins: metabolism and relationship to atherogenesis,, J. Clin. Invest., 86 (1990), 379.   Google Scholar

[26]

N. Wang, D. Lan, W. Chen, F. Matsuura, and A. Tall, ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins,, Proc. Natl. Acad. Sci. USA, 101 (2004), 9774.   Google Scholar

show all references

References:
[1]

T. Bjornheden, A. Babiy, G. Bondjers, G., and O. Wiklund, Accumulation of lipoprotein fractions and subfractions in the arterial wall, determined in an in vitro perfusion system,, Atherosclerosis, 123 (1996), 43.   Google Scholar

[2]

C. A. Cobbold, J. A. Sherratt, and S. J. R. Maxwell, Lipoprotein oxidation and its significance for atherosclerosis: a mathematical approach,, Bull. Math. Biol., 64 (2002), 65.   Google Scholar

[3]

M. A. Creager, M. A. and Braunwald, E. eds., "Atlas of Vascular Disease,", $2^{nd}$ edition, (2003).   Google Scholar

[4]

A. Daugherty, and D. L. Rateri, Pathogenesis of atherosclerotic lesions,, Cardiol. Rev., 1 (1993), 157.   Google Scholar

[5]

J. Fan, and T. Watanabe, Inflammatory reactions in the pathogenesis of atherosclerosis,, JAT, 10 (2003), 63.   Google Scholar

[6]

R. Franssen, A. W. M. Schimmel, S. I. van Leuven, S. C. S. Wolfkamp, E. S.G. Stroes, and G. M. Dallinga-Thie, In vivo inflammation does not impair ABCA1-mediated cholesterol efflux capacity of HDL,, Cholesterol, 2012 (2012), 1.   Google Scholar

[7]

J. L. Goldstein, Y. K. Ho, S. K. Basu, and M. S. Brown, Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoproteins, producing massive cholesterol deposition,, Proc. Natl. Acad. Sci. USA, 76 (1977), 333.   Google Scholar

[8]

J. Hubbard and B. West, "Differential Equations: A Dynamical Systems Approach,", Springer-Verlag, (1991).   Google Scholar

[9]

A. I. Ibragimov, C. J. McNeal, L. R. Ritter, and J. R. Walton, A mathematical model of atherogenesis as an inflammatory response,, Math. Med. and Biol., 22 (2005), 305.   Google Scholar

[10]

A. I. Ibragimov, C. J. McNeal, L. R. Ritter, and J. R. Walton, Stability analysis of a model of atherogenesis: An energy estimate approach,, J. of Comp. and Math. Meth. in Med., 9 (2008), 121.   Google Scholar

[11]

A. I. Ibragimov, L. R. Ritter, and J. R Walton, Stability analysis of a reaction-diffusion system modeling atherogenesis,, SIAM J. Appl. Math., 70 (2010), 2150.   Google Scholar

[12]

K. U. Ingold, V. W. Bowry, R. Stocker, and C. Walling, Autoxidation and antioxidation by $\alpha$-tocopherol and ubiquinol in homogeneous solution and in aqueous dispersions of lipids: unrecognized consequences of lipid particle size as exemplified by oxidation of human low density lipoprotein,, Proc. Natl. Acad. Sci. USA, 90 (1993), 45.   Google Scholar

[13]

I. Jailal, G. L. Vega, S. M. and Grundy, Physologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein,, Atherosclerosis, 82 (1990), 185.   Google Scholar

[14]

W. Khovidhunkit, M. S. Kim, R. A. Memon, J. K. Shigenaga, A. H. Moser, K. R. Feingold, and C. Grunfeld, Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host,, Journal of Lipid Research, 45 (2004), 1169.   Google Scholar

[15]

P. Libby, P. M. Ridker, and A. Maseri, Inflammation and atherosclerosis,, Circulation, 105 (2002).   Google Scholar

[16]

L. B. Neilsen, Transfer of low density lipoprotein into the arterial wall and risk of atherosclerosis,, Atherosclerosis, 123 (1996), 1.   Google Scholar

[17]

J. Neuzil, S. R. Thomas, and R. Stocker, Requirement for, promotion, or inhibition by $\alpha$-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation,, Free Radic. Biol. Med., 22 (1997), 57.   Google Scholar

[18]

J. E. Packer, T. F. Slater, and R. L. Willson, Direct observation of a free radical interaction between vitamin E and vitamin C,, Nature, 278 (1979), 737.   Google Scholar

[19]

E. A. Podrez, E. Poliakov, Z. Shen, R. Zhang, Y. Deng, M. Sun, P. J. Finton, L. Shan, B. Gugiu, P. L. Fox, H. F. Hoff, R. G. Salomon, and S. L. Hazen, Identification of a novel family of oxidized phospholipids that serve as ligands for the macrophage scavenger receptor CD36,, J. Biol. Chem., 277 (2002), 38503.   Google Scholar

[20]

Russell Ross, Cell biology of atherosclerosis,, Annu. Rev. Physiol., 57 (1995), 791.   Google Scholar

[21]

Russell Ross, Atherosclerosis-An inflammatory disease,, N. Engl. J. Med., 340 (1999), 115.   Google Scholar

[22]

D. c. Schwenke, and T. E. Carew, Initiation of atherosclerotic lesions in cholesterol fed rabbits. II Selective retention of LDL vs. Selective increases in LDL permeability in susceptible sites of arteries,, Arteriosclerosis, 9 (1989), 908.   Google Scholar

[23]

H. C. Stary, B. Chandler, S. Glagov, J. R. Guyton, W. Insull Jr., M. E. Rosenfeld, S. A. Schaffer, C. J. Schwartz, W. D. Wagner, and R. W. Wissler, A definition of initial, fatty streak, and intermediate lesions of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Special report.,, Arterioscler. Thromb., 14 (1994), 840.   Google Scholar

[24]

D. Steinberg, Atherogenesis in perspective: hypercholesterolemia and inflammation as partners in crime,, Nat. Med., 8 (2002), 1211.   Google Scholar

[25]

A. R. Tall, Plasma high density lipoproteins: metabolism and relationship to atherogenesis,, J. Clin. Invest., 86 (1990), 379.   Google Scholar

[26]

N. Wang, D. Lan, W. Chen, F. Matsuura, and A. Tall, ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins,, Proc. Natl. Acad. Sci. USA, 101 (2004), 9774.   Google Scholar

[1]

Gui-Qiang Chen, Beixiang Fang. Stability of transonic shock-fronts in three-dimensional conical steady potential flow past a perturbed cone. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 85-114. doi: 10.3934/dcds.2009.23.85

[2]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[3]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[5]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[6]

Qing Li, Yaping Wu. Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3657-3682. doi: 10.3934/dcds.2020051

[7]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[8]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[9]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[10]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[11]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[12]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[13]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[14]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[15]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[16]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[17]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[18]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[19]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[20]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

 Impact Factor: 

Metrics

  • PDF downloads (62)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]