- Previous Article
- PROC Home
- This Issue
-
Next Article
Foam cell formation in atherosclerosis: HDL and macrophage reverse cholesterol transport
Anosov diffeomorphisms
1. | LIAAD-INESC TEC and Department of Mathematics, School of Technology and Management, Polytechnic Institute of Bragança, Campus de Santa Apolónia, Ap. 1134, 5301-857 Bragança, Portugal |
2. | Departamento de Matemática, IME-USP, Caixa Postal 66281, CEP 05315-970 São Paulo, Brazil |
3. | LIAAD-INESC TEC and Department of Mathematics, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal |
4. | Warwick Systems Biology & Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom |
References:
[1] |
R. Adler, C. Tresser and P. A. Worfolk, Topological conjugacy of linear endomorphisms of the 2-torus,, Trans. Amer. Math. Soc., 349 (1997), 1633.
|
[2] |
J. P. Almeida, A. M. Fisher, A. A. Pinto and D. A. Rand, Anosov and circle diffeomorphisms,, in, (2011), 11. Google Scholar |
[3] |
J. P. Almeida, A. A. Pinto and D. A. Rand, Renormalization of circle diffeomorphism sequences and Markov sequences,, to appear in, (2012). Google Scholar |
[4] |
V. I. Arnol'd, Small denominators I: On the mapping of a circle into itself,, Investijia Akad. Nauk. Math., 25 (1961), 21.
|
[5] |
E. Cawley, The Teichmüller space of an Anosov diffeomorphism of $T^2$,, Inventiones Mathematicae, 112 (1993), 351.
|
[6] |
P. Coullet and C. Tresser, Itération d'endomorphismes et groupe de renormalisation,, Journal de Physique Colloques, 39 (1978), 5. Google Scholar |
[7] |
J. Franks, Anosov diffeomorphisms,, in, 14 (1970), 61.
|
[8] |
E. Ghys, Rigidité différentiable des groupes Fuchsiens,, Publ. IHES, 78 (1993), 163.
|
[9] |
M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, Publ. IHES, 49 (1979), 5.
|
[10] |
Y. Jiang, Teichmüller structures and dual geometric Gibbs type measure theory for continuous potentials,, preprint, (2008), 1. Google Scholar |
[11] |
Y. Jiang, Metric invariants in dynamical systems,, Journal of Dynamics and Differentiable Equations, 17 (2005), 51.
|
[12] |
O. Lanford, Renormalization group methods for critical circle mappings with general rotation number,, in, (1987), 532.
|
[13] |
R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems II,, Commun. Math. Phys., 109 (1987), 369.
|
[14] |
A. Manning, There are no new Anosov diffeomorphisms on tori,, Amer. J. Math., 96 (1974), 422.
|
[15] |
R. Manẽ, "Ergodic Theory and Differentiable Dynamics,", Springer-Verlag, (1987).
|
[16] |
J. M. Marco, and R. Moriyon, Invariants for Smooth conjugacy of hyperbolic dynamical systems I,, Commun. Math. Phys., 109 (1987), 681.
|
[17] |
J. M. Marco, and R. Moriyon, Invariants for Smooth conjugacy of hyperbolic dynamical systems III,, Commun. Math. Phys., 112 (1989), 317.
|
[18] |
H. Masur, Interval exchange transformations and measured foliations,, The Annals of Mathematics. 2nd Ser., 115 (1982), 169.
|
[19] |
W. de Melo and S. van Strien, "One-dimensional Dynamics,", A series of Modern Surveys in Mathematics, (1993).
|
[20] |
R. C. Penner and J. L. Harer, "Combinatorics of Train-Tracks,", Princeton University Press, (1992).
|
[21] |
A. A. Pinto, J. P. Almeida and A. Portela, Golden tilings,, Transactions of the American Mathematical Society, 364 (2012), 2261.
|
[22] |
A. A. Pinto, J. P. Almeida and D. A. Rand, Anosov and renormalized circle diffeomorphisms,, submitted, (2012), 1. Google Scholar |
[23] |
A. A. Pinto and D. A. Rand, Train-tracks with $C^{1+}$ self-renormalisable structures,, Journal of Difference Equations and Applications, 16 (2010), 945.
|
[24] |
A. A. Pinto and D. A. Rand, Solenoid functions for hyperbolic sets on surfaces,, in, (2007), 145.
|
[25] |
A. A. Pinto and D. A. Rand, Rigidity of hyperbolic sets on surfaces,, J. London Math. Soc., 71 (2004), 481.
|
[26] |
A. A. Pinto and D. A. Rand, Smoothness of holonomies for codimension 1 hyperbolic dynamics,, Bull. London Math. Soc., 34 (2002), 341.
|
[27] |
A. A. Pinto and D. A. Rand, Teichmüller spaces and HR structures for hyperbolic surface dynamics,, Ergodic Theory & Dynamical Systems, 22 (2002), 1905.
|
[28] |
A. A. Pinto and D. A. Rand, Existence, uniqueness and ratio decomposition for Gibbs states via duality,, Ergodic Theory & Dynamical Systems, 21 (2001), 533.
|
[29] |
A. A. Pinto and D. A. Rand, Characterising rigidity and flexibility of pseudo-Anosov and other transversally laminated dynamical systems on surfaces,, Warwick preprint, (1995). Google Scholar |
[30] |
A. A. Pinto, D. A. Rand and F. Ferreira, Arc exchange systems and renormalization,, Journal of Difference Equations and Applications, 16 (2010), 347.
|
[31] |
A. A. Pinto, D. A. Rand and F. Ferreira, Cantor exchange systems and renormalization,, Journal of Differential Equations, 243 (2007), 593.
|
[32] |
A. A. Pinto, D. A. Rand and F. Ferreira, "Fine structures of hyperbolic diffeomorphisms,", Springer Monographs in Mathematics, (2009).
|
[33] |
A. A. Pinto and D. Sullivan, The circle and the solenoid,, Dedicated to Anatole Katok On the Occasion of his 60th Birthday, 16 (2006), 463.
|
[34] |
M. Shub, "Global Stability of Dynamical Systems,", Springer-Verlag, (1987).
|
[35] |
Ya. Sinai, Markov Partitions and C-diffeomorphisms,, Anal. and Appl., 2 (1968), 70. Google Scholar |
[36] |
W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces,, Bull. Amer. Math. Soc., 19 (1988), 417.
|
[37] |
W. Veech, Gauss measures for transformations on the space of interval exchange maps,, The Annals of Mathematics, 115 (1982), 201.
|
[38] |
R. F. Williams, Expanding attractors,, Publ. I.H.E.S., 43 (1974), 169.
|
[39] |
R. F. Williams, The "DA" maps of Smale and structural stability,, in, (1970), 329.
|
[40] |
J. C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne,, Ann. Scient. Éc. Norm. Sup., 17 (1984), 333.
|
show all references
References:
[1] |
R. Adler, C. Tresser and P. A. Worfolk, Topological conjugacy of linear endomorphisms of the 2-torus,, Trans. Amer. Math. Soc., 349 (1997), 1633.
|
[2] |
J. P. Almeida, A. M. Fisher, A. A. Pinto and D. A. Rand, Anosov and circle diffeomorphisms,, in, (2011), 11. Google Scholar |
[3] |
J. P. Almeida, A. A. Pinto and D. A. Rand, Renormalization of circle diffeomorphism sequences and Markov sequences,, to appear in, (2012). Google Scholar |
[4] |
V. I. Arnol'd, Small denominators I: On the mapping of a circle into itself,, Investijia Akad. Nauk. Math., 25 (1961), 21.
|
[5] |
E. Cawley, The Teichmüller space of an Anosov diffeomorphism of $T^2$,, Inventiones Mathematicae, 112 (1993), 351.
|
[6] |
P. Coullet and C. Tresser, Itération d'endomorphismes et groupe de renormalisation,, Journal de Physique Colloques, 39 (1978), 5. Google Scholar |
[7] |
J. Franks, Anosov diffeomorphisms,, in, 14 (1970), 61.
|
[8] |
E. Ghys, Rigidité différentiable des groupes Fuchsiens,, Publ. IHES, 78 (1993), 163.
|
[9] |
M. R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations,, Publ. IHES, 49 (1979), 5.
|
[10] |
Y. Jiang, Teichmüller structures and dual geometric Gibbs type measure theory for continuous potentials,, preprint, (2008), 1. Google Scholar |
[11] |
Y. Jiang, Metric invariants in dynamical systems,, Journal of Dynamics and Differentiable Equations, 17 (2005), 51.
|
[12] |
O. Lanford, Renormalization group methods for critical circle mappings with general rotation number,, in, (1987), 532.
|
[13] |
R. de la Llave, Invariants for smooth conjugacy of hyperbolic dynamical systems II,, Commun. Math. Phys., 109 (1987), 369.
|
[14] |
A. Manning, There are no new Anosov diffeomorphisms on tori,, Amer. J. Math., 96 (1974), 422.
|
[15] |
R. Manẽ, "Ergodic Theory and Differentiable Dynamics,", Springer-Verlag, (1987).
|
[16] |
J. M. Marco, and R. Moriyon, Invariants for Smooth conjugacy of hyperbolic dynamical systems I,, Commun. Math. Phys., 109 (1987), 681.
|
[17] |
J. M. Marco, and R. Moriyon, Invariants for Smooth conjugacy of hyperbolic dynamical systems III,, Commun. Math. Phys., 112 (1989), 317.
|
[18] |
H. Masur, Interval exchange transformations and measured foliations,, The Annals of Mathematics. 2nd Ser., 115 (1982), 169.
|
[19] |
W. de Melo and S. van Strien, "One-dimensional Dynamics,", A series of Modern Surveys in Mathematics, (1993).
|
[20] |
R. C. Penner and J. L. Harer, "Combinatorics of Train-Tracks,", Princeton University Press, (1992).
|
[21] |
A. A. Pinto, J. P. Almeida and A. Portela, Golden tilings,, Transactions of the American Mathematical Society, 364 (2012), 2261.
|
[22] |
A. A. Pinto, J. P. Almeida and D. A. Rand, Anosov and renormalized circle diffeomorphisms,, submitted, (2012), 1. Google Scholar |
[23] |
A. A. Pinto and D. A. Rand, Train-tracks with $C^{1+}$ self-renormalisable structures,, Journal of Difference Equations and Applications, 16 (2010), 945.
|
[24] |
A. A. Pinto and D. A. Rand, Solenoid functions for hyperbolic sets on surfaces,, in, (2007), 145.
|
[25] |
A. A. Pinto and D. A. Rand, Rigidity of hyperbolic sets on surfaces,, J. London Math. Soc., 71 (2004), 481.
|
[26] |
A. A. Pinto and D. A. Rand, Smoothness of holonomies for codimension 1 hyperbolic dynamics,, Bull. London Math. Soc., 34 (2002), 341.
|
[27] |
A. A. Pinto and D. A. Rand, Teichmüller spaces and HR structures for hyperbolic surface dynamics,, Ergodic Theory & Dynamical Systems, 22 (2002), 1905.
|
[28] |
A. A. Pinto and D. A. Rand, Existence, uniqueness and ratio decomposition for Gibbs states via duality,, Ergodic Theory & Dynamical Systems, 21 (2001), 533.
|
[29] |
A. A. Pinto and D. A. Rand, Characterising rigidity and flexibility of pseudo-Anosov and other transversally laminated dynamical systems on surfaces,, Warwick preprint, (1995). Google Scholar |
[30] |
A. A. Pinto, D. A. Rand and F. Ferreira, Arc exchange systems and renormalization,, Journal of Difference Equations and Applications, 16 (2010), 347.
|
[31] |
A. A. Pinto, D. A. Rand and F. Ferreira, Cantor exchange systems and renormalization,, Journal of Differential Equations, 243 (2007), 593.
|
[32] |
A. A. Pinto, D. A. Rand and F. Ferreira, "Fine structures of hyperbolic diffeomorphisms,", Springer Monographs in Mathematics, (2009).
|
[33] |
A. A. Pinto and D. Sullivan, The circle and the solenoid,, Dedicated to Anatole Katok On the Occasion of his 60th Birthday, 16 (2006), 463.
|
[34] |
M. Shub, "Global Stability of Dynamical Systems,", Springer-Verlag, (1987).
|
[35] |
Ya. Sinai, Markov Partitions and C-diffeomorphisms,, Anal. and Appl., 2 (1968), 70. Google Scholar |
[36] |
W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces,, Bull. Amer. Math. Soc., 19 (1988), 417.
|
[37] |
W. Veech, Gauss measures for transformations on the space of interval exchange maps,, The Annals of Mathematics, 115 (1982), 201.
|
[38] |
R. F. Williams, Expanding attractors,, Publ. I.H.E.S., 43 (1974), 169.
|
[39] |
R. F. Williams, The "DA" maps of Smale and structural stability,, in, (1970), 329.
|
[40] |
J. C. Yoccoz, Conjugaison différentiable des difféomorphismes du cercle dont le nombre de rotation vérifie une condition diophantienne,, Ann. Scient. Éc. Norm. Sup., 17 (1984), 333.
|
[1] |
Dominic Veconi. Equilibrium states of almost Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 767-780. doi: 10.3934/dcds.2020061 |
[2] |
Maria Carvalho. First homoclinic tangencies in the boundary of Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 1998, 4 (4) : 765-782. doi: 10.3934/dcds.1998.4.765 |
[3] |
Matthieu Porte. Linear response for Dirac observables of Anosov diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1799-1819. doi: 10.3934/dcds.2019078 |
[4] |
Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1 |
[5] |
Shigenori Matsumoto. A generic-dimensional property of the invariant measures for circle diffeomorphisms. Journal of Modern Dynamics, 2013, 7 (4) : 553-563. doi: 10.3934/jmd.2013.7.553 |
[6] |
Yury Neretin. The group of diffeomorphisms of the circle: Reproducing kernels and analogs of spherical functions. Journal of Geometric Mechanics, 2017, 9 (2) : 207-225. doi: 10.3934/jgm.2017009 |
[7] |
Zemer Kosloff. On manifolds admitting stable type Ⅲ$_{\textbf1}$ Anosov diffeomorphisms. Journal of Modern Dynamics, 2018, 13: 251-270. doi: 10.3934/jmd.2018020 |
[8] |
Andrey Gogolev. Smooth conjugacy of Anosov diffeomorphisms on higher-dimensional tori. Journal of Modern Dynamics, 2008, 2 (4) : 645-700. doi: 10.3934/jmd.2008.2.645 |
[9] |
Andrey Gogolev, Misha Guysinsky. $C^1$-differentiable conjugacy of Anosov diffeomorphisms on three dimensional torus. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 183-200. doi: 10.3934/dcds.2008.22.183 |
[10] |
Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalizable Expanding Baker Maps: Coexistence of strange attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1651-1678. doi: 10.3934/dcds.2017068 |
[11] |
Antonio Pumariño, Joan Carles Tatjer. Attractors for return maps near homoclinic tangencies of three-dimensional dissipative diffeomorphisms. Discrete & Continuous Dynamical Systems - B, 2007, 8 (4) : 971-1005. doi: 10.3934/dcdsb.2007.8.971 |
[12] |
Jose F. Alves; Stefano Luzzatto and Vilton Pinheiro. Markov structures for non-uniformly expanding maps on compact manifolds in arbitrary dimension. Electronic Research Announcements, 2003, 9: 26-31. |
[13] |
Kazuhiro Sakai. The oe-property of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 581-591. doi: 10.3934/dcds.1998.4.581 |
[14] |
Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281 |
[15] |
Enrique R. Pujals, Federico Rodriguez Hertz. Critical points for surface diffeomorphisms. Journal of Modern Dynamics, 2007, 1 (4) : 615-648. doi: 10.3934/jmd.2007.1.615 |
[16] |
Baolin He. Entropy of diffeomorphisms of line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4753-4766. doi: 10.3934/dcds.2017204 |
[17] |
Masoumeh Gharaei, Ale Jan Homburg. Random interval diffeomorphisms. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 241-272. doi: 10.3934/dcdss.2017012 |
[18] |
Robert McOwen, Peter Topalov. Groups of asymptotic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6331-6377. doi: 10.3934/dcds.2016075 |
[19] |
Jinpeng An. Hölder stability of diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 315-329. doi: 10.3934/dcds.2009.24.315 |
[20] |
Sheldon Newhouse. Distortion estimates for planar diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (1&2) : 345-412. doi: 10.3934/dcds.2008.22.345 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]