2013, 2013(special): 85-94. doi: 10.3934/proc.2013.2013.85

The homogenization of the heat equation with mixed conditions on randomly subsets of the boundary

1. 

Dpto. de Matemáticas. Escuela Politécnica, Avenida de la Universidad s/n, 10003 Cáceres, Spain

2. 

Dpto. de Ecuaciones Diferenciales y Análisis Numérico., Fac. de Matemáticas. C. Tarfia s/n., 41012 Sevilla

Received  September 2012 Published  November 2013

We consider a domain in $\mathbb{R}^N$, $N\geq 3$, such that a portion of its boundary is plane. In this portion we fix a sequence $K_\epsilon$ of small subsets randomly distributed in such way that the distance between them is of order $\epsilon$ and their diameters are of order $\epsilon^\frac{N-1}{N-2}$. We study the asymptotic behavior of the heat equation with Dirichlet conditions on $K_\epsilon$ and Neumann conditions on the rest of the boundary. We prove the convergence to a limit problem with a Fourier-Robin boundary condition which has the physical interest of being deterministic.
Citation: Carmen Calvo-Jurado, Juan Casado-Díaz, Manuel Luna-Laynez. The homogenization of the heat equation with mixed conditions on randomly subsets of the boundary. Conference Publications, 2013, 2013 (special) : 85-94. doi: 10.3934/proc.2013.2013.85
References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math Anal. 23 (1992),1482-1512.

[2]

G. Allaire, M. Briane, Multiscale convergence and reiterated homogenisation, Proc. Roy. Soc. Edinburgh A 456 (1996), 297-342.

[3]

T. Arbogast, J. Douglas, U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836.

[4]

A. Bourgeat, A. Mikelic, S. Wright, Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math. 456 (1994) 19-51.

[5]

L.A. Caffarelli, A. Mellet, Random homogenization of an obstacle problem, Ann. Inst. H. Poincaré Anal. Non Linèaire 26 (2009), 2, 375-395.

[6]

C. Calvo-Jurado, J. Casado-Díaz, M. Luna-Laynez, Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets, Disc. Cont. Din. Systems Suplement (2007), 181-190.

[7]

C. Calvo-Jurado, J. Casado-Díaz, M. Luna-Laynez, Asymptotic behavior of nonlinear systems in varying domains with boundary conditions on varying sets. ESAIM Control, Optim. and Calc. Var. 15 (2009), 49-67.

[8]

C. Calvo-Jurado, J. Casado-Díaz, M. Luna-Laynez, Homogenization of Dirichlet problems in randomly perforated domains. To appear.

[9]

J. Casado-Díaz, Homogenization of Dirichlet problems for monotone operators in varying domains, Proc. Royal Soc. Edinburgh, 127A (1997), 457-478.

[10]

J. Casado-Díaz, Two-Scale convergence for nonlinear Dirichlet problems in perforated domains, Proceedings of the Royal Society of Edinburgh A, 130 (2000) 249-276.

[11]

J. Casado-Díaz, I. Gayte, The Two-Scale Convergence Method Applied to Generalized Besicovitch Spaces, Proc. R. Soc. Lond. A 2002 458, 2925-2946.

[12]

J. Casado-Díaz and A. Garroni, Asymptotic behavior of nonlinear elliptic systems on varying domains, SIAM J. Math. Anal., 31 (2000), 581-624.

[13]

D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homogenization, C.R. Acad. Sci. Paris, I, 335 (2002), 99-104.

[14]

D. Cioranescu, F. Murat, Un terme étrange venu d'ailleurs, in Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vols. II and III, Research Notes in Math. 60 and 70 Pitman, London, 1982, 98-138 and 154-178.

[15]

G. Dal Maso, L. Modica, Nonlinear stochastic homogenization, Ann. Mat. Pura Appl. 72 (1993), 405-414.

[16]

G. Dal Maso, L. Modica, Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew, Math. 368 (1986), 28-42.

[17]

G. Dal Maso, U. Mosco, Wiener-criterion and $\Gamma$-convergence, Appl. Math. Optim. 15 (1987), 15-63.

[18]

G. Dal Maso, F. Murat, Asymptotic behaviour and correctors for the Dirichlet problems in perforated domains with homogeneous monotone operators, Ann. Sc. Norm. Sup. Pisa. 7, 4 (1997), 765-803.

[19]

V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994.

[20]

S.M. Kozlov, Homogenization of random operators, Math. U.S.S.R. Sb., 37 (1980), 167-180.

[21]

M. Lenczner, Homogénéisation d'un circuit électrique, C. R. Acad. Sci. Paris II, 324 (1997), 537-542.

[22]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989), 608-623.

[23]

G.C. Papanicolaou, S.R.S. Varadhan, Diffusion in regions with many small holes, in Stochastic differential systems, Lecture Notes in Control and Information Sci., 25, Springer, Berlin, 1980, 190206.

[24]

G.C. Papanicolaou, S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Colloq. Math. Soc. J. Bolyai, North-Holland, Amsterdam (1981), 835-873.

[25]

I.V. Skrypnik., Averaging of nonlinear Dirichlet problems in punctured domains of general structure, Mat. Sb. 187, 8 (1996), 125-157.

[26]

Yosida, K., Functional Analysis, Springer-Verlag, Berlin 1980.

[27]

V.V. Yurinski, Averaging an elliptic boundary value problem with random coefficients, Sib. Math. J. 21, (3) 470-482 (1981).

show all references

References:
[1]

G. Allaire, Homogenization and two-scale convergence, SIAM J. Math Anal. 23 (1992),1482-1512.

[2]

G. Allaire, M. Briane, Multiscale convergence and reiterated homogenisation, Proc. Roy. Soc. Edinburgh A 456 (1996), 297-342.

[3]

T. Arbogast, J. Douglas, U. Hornung, Derivation of the double porosity model of single phase flow via homogenization theory, SIAM J. Math. Anal., 21 (1990), 823-836.

[4]

A. Bourgeat, A. Mikelic, S. Wright, Stochastic two-scale convergence in the mean and applications, J. Reine Angew. Math. 456 (1994) 19-51.

[5]

L.A. Caffarelli, A. Mellet, Random homogenization of an obstacle problem, Ann. Inst. H. Poincaré Anal. Non Linèaire 26 (2009), 2, 375-395.

[6]

C. Calvo-Jurado, J. Casado-Díaz, M. Luna-Laynez, Parabolic problems with varying operators and Dirichlet and Neumann boundary conditions on varying sets, Disc. Cont. Din. Systems Suplement (2007), 181-190.

[7]

C. Calvo-Jurado, J. Casado-Díaz, M. Luna-Laynez, Asymptotic behavior of nonlinear systems in varying domains with boundary conditions on varying sets. ESAIM Control, Optim. and Calc. Var. 15 (2009), 49-67.

[8]

C. Calvo-Jurado, J. Casado-Díaz, M. Luna-Laynez, Homogenization of Dirichlet problems in randomly perforated domains. To appear.

[9]

J. Casado-Díaz, Homogenization of Dirichlet problems for monotone operators in varying domains, Proc. Royal Soc. Edinburgh, 127A (1997), 457-478.

[10]

J. Casado-Díaz, Two-Scale convergence for nonlinear Dirichlet problems in perforated domains, Proceedings of the Royal Society of Edinburgh A, 130 (2000) 249-276.

[11]

J. Casado-Díaz, I. Gayte, The Two-Scale Convergence Method Applied to Generalized Besicovitch Spaces, Proc. R. Soc. Lond. A 2002 458, 2925-2946.

[12]

J. Casado-Díaz and A. Garroni, Asymptotic behavior of nonlinear elliptic systems on varying domains, SIAM J. Math. Anal., 31 (2000), 581-624.

[13]

D. Cioranescu, A. Damlamian, G. Griso, Periodic unfolding and homogenization, C.R. Acad. Sci. Paris, I, 335 (2002), 99-104.

[14]

D. Cioranescu, F. Murat, Un terme étrange venu d'ailleurs, in Nonlinear Partial Differential Equations and Their Applications, Collége de France Seminar, Vols. II and III, Research Notes in Math. 60 and 70 Pitman, London, 1982, 98-138 and 154-178.

[15]

G. Dal Maso, L. Modica, Nonlinear stochastic homogenization, Ann. Mat. Pura Appl. 72 (1993), 405-414.

[16]

G. Dal Maso, L. Modica, Nonlinear stochastic homogenization and ergodic theory, J. Reine Angew, Math. 368 (1986), 28-42.

[17]

G. Dal Maso, U. Mosco, Wiener-criterion and $\Gamma$-convergence, Appl. Math. Optim. 15 (1987), 15-63.

[18]

G. Dal Maso, F. Murat, Asymptotic behaviour and correctors for the Dirichlet problems in perforated domains with homogeneous monotone operators, Ann. Sc. Norm. Sup. Pisa. 7, 4 (1997), 765-803.

[19]

V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994.

[20]

S.M. Kozlov, Homogenization of random operators, Math. U.S.S.R. Sb., 37 (1980), 167-180.

[21]

M. Lenczner, Homogénéisation d'un circuit électrique, C. R. Acad. Sci. Paris II, 324 (1997), 537-542.

[22]

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal. 20 (1989), 608-623.

[23]

G.C. Papanicolaou, S.R.S. Varadhan, Diffusion in regions with many small holes, in Stochastic differential systems, Lecture Notes in Control and Information Sci., 25, Springer, Berlin, 1980, 190206.

[24]

G.C. Papanicolaou, S.R.S. Varadhan, Boundary value problems with rapidly oscillating random coefficients, Colloq. Math. Soc. J. Bolyai, North-Holland, Amsterdam (1981), 835-873.

[25]

I.V. Skrypnik., Averaging of nonlinear Dirichlet problems in punctured domains of general structure, Mat. Sb. 187, 8 (1996), 125-157.

[26]

Yosida, K., Functional Analysis, Springer-Verlag, Berlin 1980.

[27]

V.V. Yurinski, Averaging an elliptic boundary value problem with random coefficients, Sib. Math. J. 21, (3) 470-482 (1981).

[1]

Gregory A. Chechkin, Tatiana P. Chechkina, Ciro D’Apice, Umberto De Maio. Homogenization in domains randomly perforated along the boundary. Discrete and Continuous Dynamical Systems - B, 2009, 12 (4) : 713-730. doi: 10.3934/dcdsb.2009.12.713

[2]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. Homogenization of variational functionals with nonstandard growth in perforated domains. Networks and Heterogeneous Media, 2010, 5 (2) : 189-215. doi: 10.3934/nhm.2010.5.189

[3]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks and Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[4]

Patrizia Donato, Florian Gaveau. Homogenization and correctors for the wave equation in non periodic perforated domains. Networks and Heterogeneous Media, 2008, 3 (1) : 97-124. doi: 10.3934/nhm.2008.3.97

[5]

Arianna Giunti. Convergence rates for the homogenization of the Poisson problem in randomly perforated domains. Networks and Heterogeneous Media, 2021, 16 (3) : 341-375. doi: 10.3934/nhm.2021009

[6]

Luis Caffarelli, Antoine Mellet. Random homogenization of fractional obstacle problems. Networks and Heterogeneous Media, 2008, 3 (3) : 523-554. doi: 10.3934/nhm.2008.3.523

[7]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[8]

Natalia O. Babych, Ilia V. Kamotski, Valery P. Smyshlyaev. Homogenization of spectral problems in bounded domains with doubly high contrasts. Networks and Heterogeneous Media, 2008, 3 (3) : 413-436. doi: 10.3934/nhm.2008.3.413

[9]

Li-Ming Yeh. Pointwise estimate for elliptic equations in periodic perforated domains. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1961-1986. doi: 10.3934/cpaa.2015.14.1961

[10]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks and Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[11]

Leonid Berlyand, Petru Mironescu. Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain. Networks and Heterogeneous Media, 2008, 3 (3) : 461-487. doi: 10.3934/nhm.2008.3.461

[12]

Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks and Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361

[13]

Simone Creo, Valerio Regis Durante. Convergence and density results for parabolic quasi-linear Venttsel' problems in fractal domains. Discrete and Continuous Dynamical Systems - S, 2019, 12 (1) : 65-90. doi: 10.3934/dcdss.2019005

[14]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2777-2808. doi: 10.3934/dcds.2020385

[15]

Michel Lenczner. Homogenization of linear spatially periodic electronic circuits. Networks and Heterogeneous Media, 2006, 1 (3) : 467-494. doi: 10.3934/nhm.2006.1.467

[16]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[17]

M. M. Cavalcanti, V.N. Domingos Cavalcanti, D. Andrade, T. F. Ma. Homogenization for a nonlinear wave equation in domains with holes of small capacity. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 721-743. doi: 10.3934/dcds.2006.16.721

[18]

Wenjia Jing, Olivier Pinaud. A backscattering model based on corrector theory of homogenization for the random Helmholtz equation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5377-5407. doi: 10.3934/dcdsb.2019063

[19]

Guillaume Bal. Homogenization in random media and effective medium theory for high frequency waves. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 473-492. doi: 10.3934/dcdsb.2007.8.473

[20]

Jie Zhao. Convergence rates for elliptic reiterated homogenization problems. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2787-2795. doi: 10.3934/cpaa.2013.12.2787

 Impact Factor: 

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (0)

[Back to Top]