2015, 2015(special): 1-9. doi: 10.3934/proc.2015.0001

Thermopower of a graphene monolayer with inhomogeneous spin-orbit interaction

1. 

Institut de Física Interdisciplinària i Sistemes Complexos IFISC (UIB-CSIC), E-07122 Palma de Mallorca, Spain, Spain

Received  September 2014 Revised  July 2015 Published  November 2015

We consider a single layer of graphene with a Rashba spin-orbit coupling localized in the central region. Generally, a spin-orbit interaction induces a spin splitting and modifies the band structure of graphene, opening a gap between the two sublattices. We investigate the transport properties within the scattering approach and calculate the linear electric and thermoelectric conductances. We observe a weak dependence of the electric conductance with both the length of the spin-orbit region and the Rashba strength. Strikingly, the thermoelectric conductance is much more sensitive to variations of these two parameters. Our results are relevant in view of recent developments that emphasize thermoelectric effects in graphene.
Citation: M. I. Alomar, David Sánchez. Thermopower of a graphene monolayer with inhomogeneous spin-orbit interaction. Conference Publications, 2015, 2015 (special) : 1-9. doi: 10.3934/proc.2015.0001
References:
[1]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81 (2009), 109.

[2]

M. I. Alomar and D. Sánchez, Thermoelectric effects in graphene with local spin-orbit interaction, Phys. Rev. B, 89 (2014), 115422.

[3]

C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett., 95 (2005), 226802.

[4]

D. Dragoman and M. Dragoman, Giant thermoelectric effect in graphene, Appl. Phys. Lett., 91 (2007), 2203116.

[5]

Y. M. Zuev, W. Chang, and P. Kim, Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene, Phys. Rev. Lett., 102 (2009), 096807.

[6]

P. Wei, W. Bao, Y. Pu, C.N. Lau, and J. Shi, Anomalous Thermoelectric Transport of Dirac Particles in Graphene, Phys. Rev. Lett., 102 (2009), 166808.

[7]

H. Sevincli and G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons, Phys. Rev. B, 81 (2010), 113401 .

[8]

N. M. Gabor, J. C.W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, Hot Carrier Assisted Intrinsic Photoresponse in Graphene, Science, 334 (2011), 648.

[9]

M. Freitag, T. Low, and P. Avouris, Increased Responsivity of Suspended Graphene Photodetectors, Nano Lett., 13 (2013), 1644.

[10]

A. Varykhalov, J. Sanchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni, Phys. Rev. Lett., 101 (2008), 157601.

[11]

Yu. S. Dedkov, M. Fonin, U. Rüdiger, and C. Laubschat, Rashba Effect in the Graphene/Ni(111) System, Phys. Rev. Lett., 100 (2008), 107602.

[12]

M. Cultier and N.F. Mott, Observation of Anderson Localization in an Electron Gas, Phys. Rev., 181 (1969), 181.

[13]

L. Chico, A. Latgé, and L. Brey, Symmetries of quantum transport with Rashba spinorbit: graphene spintronics, Phys. Chem. Chem. Phys., 17 (2015), 16469.

[14]

B. Z. Rameshti and A. G. Moghaddam, Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene, Phys. Rev. B, 91, (2015), 155407.

[15]

Z. P. Niu and S. Dong, Valley and spin thermoelectric transport in ferromagnetic silicene junctions, Appl. Phys. Lett., 104 (2014), 202401.

[16]

M. I. Alomar, L. Serra, and D. Sánchez, Seebeck effects in two-dimensional spin transistors, Phys. Rev. B, 91 (2015), 075418.

show all references

References:
[1]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81 (2009), 109.

[2]

M. I. Alomar and D. Sánchez, Thermoelectric effects in graphene with local spin-orbit interaction, Phys. Rev. B, 89 (2014), 115422.

[3]

C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett., 95 (2005), 226802.

[4]

D. Dragoman and M. Dragoman, Giant thermoelectric effect in graphene, Appl. Phys. Lett., 91 (2007), 2203116.

[5]

Y. M. Zuev, W. Chang, and P. Kim, Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene, Phys. Rev. Lett., 102 (2009), 096807.

[6]

P. Wei, W. Bao, Y. Pu, C.N. Lau, and J. Shi, Anomalous Thermoelectric Transport of Dirac Particles in Graphene, Phys. Rev. Lett., 102 (2009), 166808.

[7]

H. Sevincli and G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons, Phys. Rev. B, 81 (2010), 113401 .

[8]

N. M. Gabor, J. C.W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, Hot Carrier Assisted Intrinsic Photoresponse in Graphene, Science, 334 (2011), 648.

[9]

M. Freitag, T. Low, and P. Avouris, Increased Responsivity of Suspended Graphene Photodetectors, Nano Lett., 13 (2013), 1644.

[10]

A. Varykhalov, J. Sanchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni, Phys. Rev. Lett., 101 (2008), 157601.

[11]

Yu. S. Dedkov, M. Fonin, U. Rüdiger, and C. Laubschat, Rashba Effect in the Graphene/Ni(111) System, Phys. Rev. Lett., 100 (2008), 107602.

[12]

M. Cultier and N.F. Mott, Observation of Anderson Localization in an Electron Gas, Phys. Rev., 181 (1969), 181.

[13]

L. Chico, A. Latgé, and L. Brey, Symmetries of quantum transport with Rashba spinorbit: graphene spintronics, Phys. Chem. Chem. Phys., 17 (2015), 16469.

[14]

B. Z. Rameshti and A. G. Moghaddam, Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene, Phys. Rev. B, 91, (2015), 155407.

[15]

Z. P. Niu and S. Dong, Valley and spin thermoelectric transport in ferromagnetic silicene junctions, Appl. Phys. Lett., 104 (2014), 202401.

[16]

M. I. Alomar, L. Serra, and D. Sánchez, Seebeck effects in two-dimensional spin transistors, Phys. Rev. B, 91 (2015), 075418.

[1]

Luigi Barletti, Philipp Holzinger, Ansgar Jüngel. Formal derivation of quantum drift-diffusion equations with spin-orbit interaction. Kinetic and Related Models, 2022, 15 (2) : 257-282. doi: 10.3934/krm.2022007

[2]

Van Duong Dinh. A unified approach for energy scattering for focusing nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6441-6471. doi: 10.3934/dcds.2020286

[3]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[4]

Natalie Priebe Frank, Neil Mañibo. Spectral theory of spin substitutions. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022105

[5]

Stefanie Thiem, Jörg Lässig. Modeling the thermal conductance of phononic crystal plates. Conference Publications, 2013, 2013 (special) : 737-746. doi: 10.3934/proc.2013.2013.737

[6]

Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic and Related Models, 2021, 14 (3) : 407-427. doi: 10.3934/krm.2021010

[7]

Van Duong Dinh, Sahbi Keraani. The Sobolev-Morawetz approach for the energy scattering of nonlinear Schrödinger-type equations with radial data. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2837-2876. doi: 10.3934/dcdss.2020407

[8]

Benoît Perthame, Delphine Salort. On a voltage-conductance kinetic system for integrate & fire neural networks. Kinetic and Related Models, 2013, 6 (4) : 841-864. doi: 10.3934/krm.2013.6.841

[9]

Sergei Avdonin, Jonathan Bell. Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph. Inverse Problems and Imaging, 2015, 9 (3) : 645-659. doi: 10.3934/ipi.2015.9.645

[10]

François Gay-Balma, Darryl D. Holm, Tudor S. Ratiu. Variational principles for spin systems and the Kirchhoff rod. Journal of Geometric Mechanics, 2009, 1 (4) : 417-444. doi: 10.3934/jgm.2009.1.417

[11]

Carlos J. Garcia-Cervera, Xiao-Ping Wang. Spin-polarized transport: Existence of weak solutions. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 87-100. doi: 10.3934/dcdsb.2007.7.87

[12]

Leif Arkeryd. A kinetic equation for spin polarized Fermi systems. Kinetic and Related Models, 2014, 7 (1) : 1-8. doi: 10.3934/krm.2014.7.1

[13]

Marco Cicalese, Matthias Ruf. Discrete spin systems on random lattices at the bulk scaling. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 101-117. doi: 10.3934/dcdss.2017006

[14]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[15]

Stefano Galatolo. Orbit complexity and data compression. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[16]

Peng Sun. Minimality and gluing orbit property. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162

[17]

Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113-130. doi: 10.3934/amc.2016.10.113

[18]

Nicola Zamponi. Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization. Kinetic and Related Models, 2012, 5 (1) : 203-221. doi: 10.3934/krm.2012.5.203

[19]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic and Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[20]

Carlos J. García-Cervera, Xiao-Ping Wang. A note on 'Spin-polarized transport: Existence of weak solutions'. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2761-2763. doi: 10.3934/dcdsb.2015.20.2761

 Impact Factor: 

Metrics

  • PDF downloads (210)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]