2015, 2015(special): 1-9. doi: 10.3934/proc.2015.0001

Thermopower of a graphene monolayer with inhomogeneous spin-orbit interaction

1. 

Institut de Física Interdisciplinària i Sistemes Complexos IFISC (UIB-CSIC), E-07122 Palma de Mallorca, Spain, Spain

Received  September 2014 Revised  July 2015 Published  November 2015

We consider a single layer of graphene with a Rashba spin-orbit coupling localized in the central region. Generally, a spin-orbit interaction induces a spin splitting and modifies the band structure of graphene, opening a gap between the two sublattices. We investigate the transport properties within the scattering approach and calculate the linear electric and thermoelectric conductances. We observe a weak dependence of the electric conductance with both the length of the spin-orbit region and the Rashba strength. Strikingly, the thermoelectric conductance is much more sensitive to variations of these two parameters. Our results are relevant in view of recent developments that emphasize thermoelectric effects in graphene.
Citation: M. I. Alomar, David Sánchez. Thermopower of a graphene monolayer with inhomogeneous spin-orbit interaction. Conference Publications, 2015, 2015 (special) : 1-9. doi: 10.3934/proc.2015.0001
References:
[1]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene,, Rev. Mod. Phys., 81 (2009).   Google Scholar

[2]

M. I. Alomar and D. Sánchez, Thermoelectric effects in graphene with local spin-orbit interaction,, Phys. Rev. B, 89 (2014).   Google Scholar

[3]

C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene,, Phys. Rev. Lett., 95 (2005).   Google Scholar

[4]

D. Dragoman and M. Dragoman, Giant thermoelectric effect in graphene,, Appl. Phys. Lett., 91 (2007).   Google Scholar

[5]

Y. M. Zuev, W. Chang, and P. Kim, Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene,, Phys. Rev. Lett., 102 (2009).   Google Scholar

[6]

P. Wei, W. Bao, Y. Pu, C.N. Lau, and J. Shi, Anomalous Thermoelectric Transport of Dirac Particles in Graphene,, Phys. Rev. Lett., 102 (2009).   Google Scholar

[7]

H. Sevincli and G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons,, Phys. Rev. B, 81 (2010).   Google Scholar

[8]

N. M. Gabor, J. C.W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, Hot Carrier Assisted Intrinsic Photoresponse in Graphene,, Science, 334 (2011).   Google Scholar

[9]

M. Freitag, T. Low, and P. Avouris, Increased Responsivity of Suspended Graphene Photodetectors,, Nano Lett., 13 (2013).   Google Scholar

[10]

A. Varykhalov, J. Sanchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni,, Phys. Rev. Lett., 101 (2008).   Google Scholar

[11]

Yu. S. Dedkov, M. Fonin, U. Rüdiger, and C. Laubschat, Rashba Effect in the Graphene/Ni(111) System,, Phys. Rev. Lett., 100 (2008).   Google Scholar

[12]

M. Cultier and N.F. Mott, Observation of Anderson Localization in an Electron Gas,, Phys. Rev., 181 (1969).   Google Scholar

[13]

L. Chico, A. Latgé, and L. Brey, Symmetries of quantum transport with Rashba spinorbit: graphene spintronics,, Phys. Chem. Chem. Phys., 17 (2015).   Google Scholar

[14]

B. Z. Rameshti and A. G. Moghaddam, Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene,, Phys. Rev. B, 91 (2015).   Google Scholar

[15]

Z. P. Niu and S. Dong, Valley and spin thermoelectric transport in ferromagnetic silicene junctions,, Appl. Phys. Lett., 104 (2014).   Google Scholar

[16]

M. I. Alomar, L. Serra, and D. Sánchez, Seebeck effects in two-dimensional spin transistors,, Phys. Rev. B, 91 (2015).   Google Scholar

show all references

References:
[1]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene,, Rev. Mod. Phys., 81 (2009).   Google Scholar

[2]

M. I. Alomar and D. Sánchez, Thermoelectric effects in graphene with local spin-orbit interaction,, Phys. Rev. B, 89 (2014).   Google Scholar

[3]

C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene,, Phys. Rev. Lett., 95 (2005).   Google Scholar

[4]

D. Dragoman and M. Dragoman, Giant thermoelectric effect in graphene,, Appl. Phys. Lett., 91 (2007).   Google Scholar

[5]

Y. M. Zuev, W. Chang, and P. Kim, Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene,, Phys. Rev. Lett., 102 (2009).   Google Scholar

[6]

P. Wei, W. Bao, Y. Pu, C.N. Lau, and J. Shi, Anomalous Thermoelectric Transport of Dirac Particles in Graphene,, Phys. Rev. Lett., 102 (2009).   Google Scholar

[7]

H. Sevincli and G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons,, Phys. Rev. B, 81 (2010).   Google Scholar

[8]

N. M. Gabor, J. C.W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, Hot Carrier Assisted Intrinsic Photoresponse in Graphene,, Science, 334 (2011).   Google Scholar

[9]

M. Freitag, T. Low, and P. Avouris, Increased Responsivity of Suspended Graphene Photodetectors,, Nano Lett., 13 (2013).   Google Scholar

[10]

A. Varykhalov, J. Sanchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni,, Phys. Rev. Lett., 101 (2008).   Google Scholar

[11]

Yu. S. Dedkov, M. Fonin, U. Rüdiger, and C. Laubschat, Rashba Effect in the Graphene/Ni(111) System,, Phys. Rev. Lett., 100 (2008).   Google Scholar

[12]

M. Cultier and N.F. Mott, Observation of Anderson Localization in an Electron Gas,, Phys. Rev., 181 (1969).   Google Scholar

[13]

L. Chico, A. Latgé, and L. Brey, Symmetries of quantum transport with Rashba spinorbit: graphene spintronics,, Phys. Chem. Chem. Phys., 17 (2015).   Google Scholar

[14]

B. Z. Rameshti and A. G. Moghaddam, Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene,, Phys. Rev. B, 91 (2015).   Google Scholar

[15]

Z. P. Niu and S. Dong, Valley and spin thermoelectric transport in ferromagnetic silicene junctions,, Appl. Phys. Lett., 104 (2014).   Google Scholar

[16]

M. I. Alomar, L. Serra, and D. Sánchez, Seebeck effects in two-dimensional spin transistors,, Phys. Rev. B, 91 (2015).   Google Scholar

[1]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[2]

Stefanie Thiem, Jörg Lässig. Modeling the thermal conductance of phononic crystal plates. Conference Publications, 2013, 2013 (special) : 737-746. doi: 10.3934/proc.2013.2013.737

[3]

Benoît Perthame, Delphine Salort. On a voltage-conductance kinetic system for integrate & fire neural networks. Kinetic & Related Models, 2013, 6 (4) : 841-864. doi: 10.3934/krm.2013.6.841

[4]

Sergei Avdonin, Jonathan Bell. Determining a distributed conductance parameter for a neuronal cable model defined on a tree graph. Inverse Problems & Imaging, 2015, 9 (3) : 645-659. doi: 10.3934/ipi.2015.9.645

[5]

François Gay-Balma, Darryl D. Holm, Tudor S. Ratiu. Variational principles for spin systems and the Kirchhoff rod. Journal of Geometric Mechanics, 2009, 1 (4) : 417-444. doi: 10.3934/jgm.2009.1.417

[6]

Carlos J. Garcia-Cervera, Xiao-Ping Wang. Spin-polarized transport: Existence of weak solutions. Discrete & Continuous Dynamical Systems - B, 2007, 7 (1) : 87-100. doi: 10.3934/dcdsb.2007.7.87

[7]

Leif Arkeryd. A kinetic equation for spin polarized Fermi systems. Kinetic & Related Models, 2014, 7 (1) : 1-8. doi: 10.3934/krm.2014.7.1

[8]

Marco Cicalese, Matthias Ruf. Discrete spin systems on random lattices at the bulk scaling. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 101-117. doi: 10.3934/dcdss.2017006

[9]

Matthias Rumberger. Lyapunov exponents on the orbit space. Discrete & Continuous Dynamical Systems - A, 2001, 7 (1) : 91-113. doi: 10.3934/dcds.2001.7.91

[10]

Stefano Galatolo. Orbit complexity and data compression. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 477-486. doi: 10.3934/dcds.2001.7.477

[11]

Shiqiu Liu, Frédérique Oggier. On applications of orbit codes to storage. Advances in Mathematics of Communications, 2016, 10 (1) : 113-130. doi: 10.3934/amc.2016.10.113

[12]

Peng Sun. Minimality and gluing orbit property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4041-4056. doi: 10.3934/dcds.2019162

[13]

Nicola Zamponi. Some fluid-dynamic models for quantum electron transport in graphene via entropy minimization. Kinetic & Related Models, 2012, 5 (1) : 203-221. doi: 10.3934/krm.2012.5.203

[14]

Stefan Possanner, Claudia Negulescu. Diffusion limit of a generalized matrix Boltzmann equation for spin-polarized transport. Kinetic & Related Models, 2011, 4 (4) : 1159-1191. doi: 10.3934/krm.2011.4.1159

[15]

Carlos J. García-Cervera, Xiao-Ping Wang. A note on 'Spin-polarized transport: Existence of weak solutions'. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2761-2763. doi: 10.3934/dcdsb.2015.20.2761

[16]

Lei Yang, Xiao-Ping Wang. Dynamics of domain wall in thin film driven by spin current. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1251-1263. doi: 10.3934/dcdsb.2010.14.1251

[17]

Heide Gluesing-Luerssen, Katherine Morrison, Carolyn Troha. Cyclic orbit codes and stabilizer subfields. Advances in Mathematics of Communications, 2015, 9 (2) : 177-197. doi: 10.3934/amc.2015.9.177

[18]

Andres del Junco, Daniel J. Rudolph, Benjamin Weiss. Measured topological orbit and Kakutani equivalence. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 221-238. doi: 10.3934/dcdss.2009.2.221

[19]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[20]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

 Impact Factor: 

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]