\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Thermopower of a graphene monolayer with inhomogeneous spin-orbit interaction

Abstract Related Papers Cited by
  • We consider a single layer of graphene with a Rashba spin-orbit coupling localized in the central region. Generally, a spin-orbit interaction induces a spin splitting and modifies the band structure of graphene, opening a gap between the two sublattices. We investigate the transport properties within the scattering approach and calculate the linear electric and thermoelectric conductances. We observe a weak dependence of the electric conductance with both the length of the spin-orbit region and the Rashba strength. Strikingly, the thermoelectric conductance is much more sensitive to variations of these two parameters. Our results are relevant in view of recent developments that emphasize thermoelectric effects in graphene.
    Mathematics Subject Classification: Primary: 82D80, 82D37; Secondary: 81U15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81 (2009), 109.

    [2]

    M. I. Alomar and D. Sánchez, Thermoelectric effects in graphene with local spin-orbit interaction, Phys. Rev. B, 89 (2014), 115422.

    [3]

    C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Phys. Rev. Lett., 95 (2005), 226802.

    [4]

    D. Dragoman and M. Dragoman, Giant thermoelectric effect in graphene, Appl. Phys. Lett., 91 (2007), 2203116.

    [5]

    Y. M. Zuev, W. Chang, and P. Kim, Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene, Phys. Rev. Lett., 102 (2009), 096807.

    [6]

    P. Wei, W. Bao, Y. Pu, C.N. Lau, and J. Shi, Anomalous Thermoelectric Transport of Dirac Particles in Graphene, Phys. Rev. Lett., 102 (2009), 166808.

    [7]

    H. Sevincli and G. Cuniberti, Enhanced thermoelectric figure of merit in edge-disordered zigzag graphene nanoribbons, Phys. Rev. B, 81 (2010), 113401 .

    [8]

    N. M. Gabor, J. C.W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero, Hot Carrier Assisted Intrinsic Photoresponse in Graphene, Science, 334 (2011), 648.

    [9]

    M. Freitag, T. Low, and P. Avouris, Increased Responsivity of Suspended Graphene Photodetectors, Nano Lett., 13 (2013), 1644.

    [10]

    A. Varykhalov, J. Sanchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D. Marchenko, and O. Rader, Electronic and Magnetic Properties of Quasifreestanding Graphene on Ni, Phys. Rev. Lett., 101 (2008), 157601.

    [11]

    Yu. S. Dedkov, M. Fonin, U. Rüdiger, and C. Laubschat, Rashba Effect in the Graphene/Ni(111) System, Phys. Rev. Lett., 100 (2008), 107602.

    [12]

    M. Cultier and N.F. Mott, Observation of Anderson Localization in an Electron Gas, Phys. Rev., 181 (1969), 181.

    [13]

    L. Chico, A. Latgé, and L. Brey, Symmetries of quantum transport with Rashba spinorbit: graphene spintronics, Phys. Chem. Chem. Phys., 17 (2015), 16469.

    [14]

    B. Z. Rameshti and A. G. Moghaddam, Spin-dependent Seebeck effect and spin caloritronics in magnetic graphene, Phys. Rev. B, 91, (2015), 155407.

    [15]

    Z. P. Niu and S. Dong, Valley and spin thermoelectric transport in ferromagnetic silicene junctions, Appl. Phys. Lett., 104 (2014), 202401.

    [16]

    M. I. Alomar, L. Serra, and D. Sánchez, Seebeck effects in two-dimensional spin transistors, Phys. Rev. B, 91 (2015), 075418.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(228) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return